## SOME SPECIFIC PROBABILITY DISTRIBUTIONS

## 1. NORMAL RANDOM VARIABLES

1.1. Probability Density Function. The random variable X is said to be normally distributed with mean  $\mu$  and variance  $\sigma^2$  (abbreviated by  $x \sim N[\mu, \sigma^2]$  if the density function of x is given by

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
(1)

The normal probability density function is bell-shaped and symmetric. The figure below shows the probability distribution function for the normal distribution with a  $\mu = 0$  and  $\sigma = 1$ . The areas between the two lines is 0.68269. This represents the probability that an observation lies within one standard deviation of the mean.



Date: August 9, 2004.

The next figure below shows the portion of the distribution between -4 and 0 when the mean is one and  $\sigma$  is equal to two.



## 1.2. Properties of the normal random variable.

- **a:**  $E(x) = \mu$ ,  $Var(x) = \sigma^2$ .
- **b:** The density is continuous and symmetric about  $\mu$ .
- c: The population mean, median, and mode coincide.
- d: The range is unbounded.
- e: There are points of inflection at  $\mu \pm \sigma$ .
- **f:** It is completely specified by the two parameters  $\mu$  and  $\sigma^2$ .
- g: The sum of two independently distributed normal random variables is normally distributed. If  $Y = \alpha X_1 + \beta X_2 + \gamma$  where  $X_1 \sim N(\mu_1, \sigma_1^2)$  and  $X_2 \sim N(\mu_2, \sigma_2^2)$  and  $X_1$  and  $X_2$  are independent, then  $Y \sim N(\alpha \mu_1 + \beta \mu_2 + \gamma; \alpha^2 \sigma_1^2 + \beta^2 \sigma_2^2)$ .

## 1.3. Distribution function of a normal random variable.

$$F(x; \mu, \sigma^2) = Pr(X \le x) = \int_{-\infty}^x f(s; \mu, \sigma^2) ds$$
(2)

Here is the probability density function and the cumulative distribution of the normal distribution with  $\mu = 0$  and  $\sigma = 1$ .



FIGURE 3. Normal pdf and cdf

1.4. Evaluating probability statements with a normal random variable. If  $x \sim N(\mu, \sigma^2)$  then,

$$Z = \frac{X-\mu}{\sigma} \sim N(0,1)$$
  

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma} \cdot (E(X) - \mu) = 0$$
  

$$Var(Z) = Var\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2} Var(X - \sigma)$$
  

$$= \frac{\sigma^2}{\sigma^2} = 1$$
(3)

Consequently,

$$Pr(a \leq x \leq b) = Pr(a - \mu \leq x - \mu \leq b - \mu)$$
  
=  $Pr\left[\frac{a - \mu}{\sigma} \leq \frac{x - \mu}{\sigma} \leq \frac{b - \mu}{\sigma}\right]$   
=  $F\left(\frac{b - \mu}{\sigma}; 0, 1\right) - F\left(\frac{a - \mu}{\sigma}; 0, 1\right)$   
=  $area \ below$  (4)



We can then merely look in tables for the distribution function of a N(0,1) variable.

1.5. Moment generating function of a normal random variable. The moment generating function for the central moments is as follows

$$M_X(t) = e^{\frac{t^2 \sigma^2}{2}}.$$
 (5)

The first central moment is

$$E(X - \mu) = \frac{d}{dt} \left( e^{\frac{t^2 \sigma^2}{2}} \right)|_{t=0}$$
  
=  $t \sigma^2 \left( e^{\frac{t^2 \sigma^2}{2}} \right)|_{t=0}$   
=  $0$  (6)

The second central moment is

$$E(X - \mu)^{2} = \frac{d^{2}}{dt^{2}} \left( e^{\frac{t^{2} \sigma^{2}}{2}} \right) |_{t=0}$$
  
=  $\frac{d}{dt} \left( t \sigma^{2} \left( e^{\frac{t^{2} \sigma^{2}}{2}} \right) \right) |_{t=0}$   
=  $\left( t^{2} \sigma^{4} \left( e^{\frac{t^{2} \sigma^{2}}{2}} \right) + \sigma^{2} \left( e^{\frac{t^{2} \sigma^{2}}{2}} \right) \right) |_{t=0}$   
=  $\sigma^{2}$  (7)

The third central moment is

$$E(X - \mu)^{3} = \frac{d^{3}}{dt^{3}} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) |_{t=0}$$
  

$$= \frac{d}{dt} \left( t^{2} \sigma^{4} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) + \sigma^{2} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) \right) |_{t=0}$$
  

$$= \left( t^{3} \sigma^{6} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) + 2t \sigma^{4} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) + t \sigma^{4} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) \right) |_{t=0}$$
  

$$= \left( t^{3} \sigma^{6} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) + 3t \sigma^{4} \left( e^{\frac{t^{2}\sigma^{2}}{2}} \right) \right) |_{t=0}$$
  

$$= 0$$
(8)

The fourth central moment is

$$\begin{split} E(X - \mu)^4 &= \frac{d^4}{dt^4} \left( e^{\frac{t^2 \sigma^2}{2}} \right) |_{t=0} \\ &= \frac{d}{dt} \left( t^3 \sigma^6 \left( e^{\frac{t^2 \sigma^2}{2}} \right) + 3 t \sigma^4 \left( e^{\frac{t^2 \sigma^2}{2}} \right) \right) |_{t=0} \\ &= \left( t^4 \sigma^8 \left( e^{\frac{t^2 \sigma^2}{2}} \right) + 3 t^2 \sigma^6 \left( e^{\frac{t^2 \sigma^2}{2}} \right) + 3 t^2 \sigma^6 \left( e^{\frac{t^2 \sigma^2}{2}} \right) + 3 \sigma^4 \left( e^{\frac{t^2 \sigma^2}{2}} \right) \right) |_{t=0} \\ &= \left( t^4 \sigma^8 \left( e^{\frac{t^2 \sigma^2}{2}} \right) + 6 t^2 \sigma^6 \left( e^{\frac{t^2 \sigma^2}{2}} \right) + 3 \sigma^4 \left( e^{\frac{t^2 \sigma^2}{2}} \right) \right) |_{t=0} \\ &= 3 \sigma^4 \end{split}$$
(9)

# 2. Chi-square random variable

2.1. Probability Density Function. The random variable X is said to be a chi-square random variable with  $\nu$  degrees of freedom [abbreviated  $\chi^2(\nu)$ ] if the density function of X is given by

$$f(x; \nu) = \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{v}{2})} x^{\frac{\nu-2}{2}} e^{\frac{-x}{2}} 0 < x$$
  
= 0 otherwise (10)

where  $\Gamma$  (  $\,\cdot\,$  ) is the gamma function defined by

$$\Gamma(r) = \int_0^\infty u^{r-1} e^{-u} du r > 0$$
(11)

Note that for positive integer values of r,  $\Gamma(r)$  = (r - 1)!

The following diagram shows the pdf and cdf for the chi-square distribution with parameters  $\nu$  =10.



## 2.2. Properties of the chi-square random variable.

2.2.1.  $\chi^2$  and N(0,1). Consider n independent random variables.

If 
$$X_i \sim N(0, 1)$$
  $i = 1, 2, ..., n$   
then  $\sum_{i=1}^n X_i^2 \sim \chi^2(n)$  (12)

It can also be shown that

If 
$$X_i \sim N(0, 1)$$
  $i = 1, 2, ..., n$   
then  $\sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$  (13)

because this is the sum of (n-1) independent random variables given that  $\bar{X}$  and (n-1) of the x's are independent.

2.2.2.  $\chi^2$  and  $N(\mu, \sigma^2)$ .

If 
$$X_i \sim N(\mu, \sigma^2) i = 1, 2, ..., n$$
  
then  $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$  (14)  
and  $\sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$ 

2.2.3. Sums of chi-square random variables. If  $y_1$  and  $y_2$  are independently distributed as  $\chi^2(\nu_1)$  and  $\chi^2(\nu_2)$ , respectively, then

$$y_1 + y_2 \sim \chi^2(\nu 1 + \nu 2).$$
 (15)

2.2.4. Moments of chi-square random variables.

$$Mean (\chi^{2}(\nu)) = \nu = degrees of freedom$$

$$Var (\chi^{2}(\nu)) = 2\nu$$

$$Mode (\chi^{2}(\nu)) = \nu - 2$$
(16)

# 2.3. The distribution function of $\chi^2(\nu)$ .

$$F(x;\nu) = \int_0^x f(s;\nu)ds \tag{17}$$

is tabulated in most statistics and econometrics texts.

## 2.4. Moment generating function. The moment generating function is as follows

$$M_X(t) = \frac{1}{(1 - 2t)^{\nu/2}}, t < \frac{1}{2}$$
(18)

The first moment is

$$E(X) = \frac{d}{dt} \left( \frac{1}{(1-2t)^{\nu/2}} \right) |_{t=0} = \left( \frac{\nu}{(1-2t)^{(\nu+1)/2}} \right) |_{t=0} = \nu$$
(19)

#### 3. The Student's t random variable

This distribution was published by William Gosset in 1908. His employer, Guinness Breweries, required him to publish under a pseudonym, so he chose "Student."

## 3.1. Relationship of Student's t-Distribution to Normal Distribution. The ratio

$$t = \frac{N(0,1)}{\sqrt{\frac{\chi^{2}(\nu)}{\nu}}}$$
(20)

has the Student's t density function with  $\nu$  degrees of freedom where the standard normal variate in the numerator is distributed independently of the  $\chi^2$  variate in the denominator. Tabulations of the associated distribution function are included in most statistics and econometrics books. Note that it is symmetric about origin.

### 3.2. Probability Density Function. The density of Student's t distribution is given by:

$$f(t;\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\,\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{\frac{-(\nu+1)}{2}} - \infty < t < \infty$$
(21)

The following diagram shows the pdf and cdf for the Student's t-distribution with parameter  $\nu = 10$ .



The following diagram shows the cdf for the Student's t-distribution with parameters  $\nu = 10$  and  $\nu = 3$ .



## 3.3. Moments of Student's t-distribution.

$$\begin{aligned} Mean (t(\nu)) &= 0\\ Var (t(\nu)) &= \frac{\nu}{\nu - 2} \end{aligned} \tag{22}$$

#### 4. The F (Fisher Variance Ratio) statistic

4.1. Distribution Function. If  $\chi^2_1(\nu_1)$  and  $\chi^2_2(\nu_2)$  are independently distributed chi-square variates, then

$$F(\nu_1, \nu_2) = \frac{\frac{\chi_1^2(\nu_1)}{\nu_1}}{\frac{\chi_2^2(\nu_2)}{\nu_2}} = \frac{\nu_2}{\nu_1} \cdot \frac{\chi_1^2(\nu_1)}{\chi_2^2(\nu_2)}$$
(23)

has the F density with  $\nu_1$  and  $\nu_2$  degrees of freedom.

## 4.2. Probability Density Function. The density of the F distribution is

$$f(F;\nu_{1},\nu_{2}) = \frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right)\Gamma\left(\frac{\nu_{2}}{2}\right)} \cdot \left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \cdot F^{\frac{\nu_{1}}{2}-1} \cdot \left(1+\frac{\nu_{1}}{\nu_{2}}F\right)^{\frac{-(\nu_{1}+\nu_{2})}{2}} F > 0$$

$$= 0 \ otherwise$$
(24)

Tabulations of the distribution of  $F(\nu_1,\nu_2)$  are widely available. Note that  $F_{\nu_1,\nu_2} \sim \left(\frac{1}{F_{\nu_2,\nu_1}}\right)$ and therefore the critical values can be found from  $f_{\alpha \nu_1, \nu_2} = \left(\frac{1}{f_{1-\alpha \nu_2, \nu_1}}\right)$ . The following diagram shows the pdf and cdf for the F distribution with parameters  $\nu_1 = 12$  and

 $\nu_2 = 20.$ 



FIGURE 8. F Distribution pdf and cdf

Here is the pdf of the F distribution for some alternative values of pairs of values ( $\nu_1$  and  $\nu_2$ ).



4.3. moments of the F distribution.

$$E(F) = \frac{\nu_2}{\nu_2 - 2} \tag{25}$$

$$Var(F) = \frac{2\nu_2^2(\nu 1 + \nu 2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$$
(26)