《神经生物学》双语教学大纲

发布时间: 2008-05-23      访问次数: 355

课程代码  356.130.1.01

 

 

 

 

 

 

The teaching outline of Neurobiology

 

 

 

 

本科生双语教学用

 

 

 

 

神经生物学系

 

 

 

 

 

 

 

 

 

 

2005-2-28

 

 

 

 

 

Chapter 1 Neurotransmitter systems and function: overview

1. Requirements:

1)      knowing the concept of neurotransmitter; the classification of neurotransmitters; the structure and environment of neurons; the neurochemistry of neurotransmitters

2)      holding the basic action of neurotransmitters; the criteria of neurotransmitters

3)      understanding the mechanism of the action of neurotransmitters

2.Contents:

1) Chemical transmission

   the concept of neurotransmitter; the process of chemical neurotransmission

2) Neurotransmitter classification

3) Neurons

  structure and environment

4) Neurotransmitter function

  basic circuitry; the excitatory action of neurotransmitters; the inhibitory action of neurotransmitters; the mechanism of the action of neurotransmitters; neurotransmitter organization and utilization 

5) Neurochemistry of neurotransmitters

  the criteria of neurotransmitters; the presence, subcellular localization, synthesis, release, receptors and degradation of neurotransmitters 

3. Key words:

 

chemical transmission

化学传递

neurotransmitter

神经递质

neuron

神经元

dendrite

树突

axon

轴突

soma

细胞体

synapse

突触

axo-dentritic synapse

轴突-树突突触

axo-axonic synapse

轴突-轴突突触

axo-somatic synapse

轴突-胞体突触

dendro-dendritic synapse

树突-树突突触

excitatory postsynaptic potentials

兴奋性突触后电位

inhibitory postsynaptic potentials

抑制性突触后电位

asymmetric type 1 synapse

非对称1型突触

symmetric type 2 synapse

对称2型突触

neurotransmitter co-existence      

神经递质共存

 

4 Questions:    

1)    What makes neurons special?

2)    What are the features of neurotransmitters?

3)    How does a signal move from one neuron to another?

4)    What are the actions of neurotransmitters?

Chapter 2 Control of Neuronal Activity

1. Requirements:

4)      knowing the formation of ionic gradients, the role of pumps and the mechanism underlying resting membrane potential; knowing the methods for recording ion channel currents and membrane potentials

5)      holding the features of ion channels and types of ion channels; holding types of calcium channels, regulation of calcium channels by neurotransmitters and types of slow potassium channels.

6)      Understanding the mechanism underlying action potentials; understanding the role of slow potassium channels in adaptation and the role of calcium channels in plateau and pacemaking, the role of hyperpolarization-activated cation channels in pacemaking;

2.Contents:

1) The resting state of nerve cells

   the formation of ionic gradients; the role of pumps; the mechanism underlying resting membrane potential

2) Ion channels

   the features of ion channelstypes of ion channels

3) Action potentials

   the mechanism underlying action potentials

4) Calcium channels and transmitter release

   types of calcium channelsregulation of calcium channels by neurotransmitters

5) Ion channels affecting the pattern and frequency of action potential discharges

   types of slow potassium channels; slow potassium channels and adaptation; calcium channels and plateau and pacemaking; hyperpolarization-activated cation channels and pacemaking 

6) Recording neuronal activity

   recording ion channel currentssingle-channel and whole-cell current recording; recording membrane potentials

3. Key words:

resting membrane potential

静息膜电位

action potential

动作电位

threshold

阈值

after-potential

后电位

after-hyperpolarization

负后电位

after-depolarization

正后电位

ion channels

离子通道

non-gating channels

非门控离子通道

gating channels

门控离子通道

patch clamp

膜片钳

voltage-gated sodium channels

电压门控钠通道

voltage-gated calcium channels

电压门控钙通道

delayed rectifier potassium channels

延迟整流钾通道

ionic gradients

离子递度

calcium-activated channels

钙激活的钾通道

inwardly-rectifying potassium channels

 

M-channels

 

adaptation of action potentials

 

P/Q calcium channels

 

L calcium channels

 

T calcium channels

 

patch clamp

 

4 Questions:    

5)    What are the common features of ion channels?

6)    How many types of ion channels are there?

7)    What are the roles of ion channels?

8)    How are the pattern and frequency of action potential discharges regulated? 

 

Chapter 3: Neurotransmitter receptors

1. Requirements:

1)      Understand the structure, distribution and functional properties of neurotransmitter receptors.

2)      Holding the principles of how the action of drugs at neurotransmitter receptors can be studied.

2. Contents:

Concept of receptors

Chemical property:

- Polypeptides (proteins).

- One or more (up to five) polypeptide chains constitute a complete receptor molecule.

- Chain length from 100 to over 1000 amino acids per each chain.

Function of receptors:

- Main function is signal transduction.

-Information from the extracellular space into the cell.

-From cell to cell.

-Between cell compartments within a cell.

Importance of receptors for the brain function:

-The integration of sensory input, past experience, and inborn instinct by central nervous system in the generation of appropriate behavioral activity is only possible because of the specialized properties and diversity of neurotransmitter receptors in the nervous system that mediate signaling between neurons.

Identification and classification of neurotransmitter receptors:

•Traditional pharmacological identification:

-Potency order of agonists: disadvantages.

-Affinity of antagonists.

Impact of modern molecular biology:

-Cloning of receptors: methods and use in receptor identification and classification.

Receptor mechanisms

Ion channel receptors.

G-protein-coupled receptors.

Receptor classification in the post-genomic era

Subtle difference in receptor subtypes.

Subtype selective drugs.

Orphan receptors.

Ion channel receptors

General

Only a few transmitters are used and diversity of effect is achieved by utilizing a diversity of receptors.

Subunit transmembrane topology

The 4TM receptors: nAchRs, GABAARs, Glycine receptors…

The 3TM receptors: Glutamate receptors.

The 2TM receptors: ATP receptors.

• Subunit stiochiometry

Homomeric receptors.

Heteromeric receptors.

Expression of receptor subunit composition

Nicotinic receptors:

Pentameric structure.

Subunit composition of peripheral (neuromuscular junction, torpedo electroplaque) nicotinic receptors.

Subunit composition of central nicotinic receptors:

-The heteromeric a42b23 subtype.

- The homomeric a7 subtype.

Glycine receptors

GABA receptors

•Hetero-pentamers

•Mediate fast inhibitory synaptic transmission in the CNS

•Complex receptor composition

-a subunit (a1-a6)

-b subunit (b1-b4)

-g (4), s, e, p, r (3)

•A minimal combination of a b g is required for reproducing features known for the endogenous GABAA receptors.

•Binding of two GABA molecules are required for channel opening.

•The GABAA channel is selectively permeable to Cl- ions.

•Agonist: GABA, Muscimol.

•Competitive antagonist: Bicuculline.

•Non-competitive antagonists: picrotoxin, TBPS (t-butylbicyclophosphothianate).

•Modulators:

-benzodiazepines (potentiation of GABA responses, requires γ subunit, used as transquilizers and sleeping pills).

-barbituates (also enhances GABA responses, used to treat epilepsy, sleeping disorder, etc.).

-Alcohol (increases ion flow upon GABA binding).

Why sleeping pill cannot be taken with alcohol…

5-HT3 receptors

Glutamate receptors

•Kainite receptors:

-GluR5-GluR7, KA1, KA2 subunits.

•AMPA receptors:

-Homomeric or heteromeric composed of GluR1- GluR4 subunits.

-Fast kinetics, mediates fast excitatory synaptic transmission in the CNS.

-Permeable to Na, K and sometimes Ca ions.

•NMDA receptors:

-Requires co-agonist Glycine.

-Requires one or more members of NR1, NR2, and NR3 subunits for function.

-Slow kinetics.

-Ca permeable, Asparagine at the site corresponding to AMPAR Q/R site.

-Voltage-dependent Mg blockade, requires depolarization for receptor activation at resting membrane potential – coincidence detector, LTP...

-Silent synapse.

G-protein-coupled receptors:

One peptide chain represents the complete receptor molecule.

Seven transmembrane domains (7 TMs) connected by three extracellular and three intracellular loops.

The N-terminal end is extracellular, the C-terminus is intracellular.

Transmembrane topography and tertinary structure

Crystallographic study.

Cryoelectron microscopic study.

Receptor activation

•Ligand-binding domain.

•G-protein coupling.

Gs, activates adenylyl cyclase; Gi, inhibits adenylyl cyclase; Gq, activates phospholipase C; Gt, activates phosphodiesterase; Go, inhibits voltage-dependent Ca and K channels.

 

•Receptor dimerisation: effect enhancement; desensitization.

7-TM domain receptor families

Rhodopsin-like Family

-Ligand binding within transmembrane domains.

-Include rhodopsin; Adrenergic R; Monoamine R; Nucleotide R; Odorant R; Chemokines R.

•Glucagon/VIP/calcitonin family

Ligand binding outside transmembrane domains.

-Include Glucagon/VIP/calcitonin Family (+ coupled to AC); Glicagon, GLP-1, -2; Calcitonin; GHRH; CRF; Parathyroid hormone R.

•Metabotropic Glutamate & Chemosensor Family

-Ligand binding on large extracellullar N-terminal.

-Include mGluRs; GABAB R; Calcium sensing receptors; T1R - sweet taste receptors; V2R – pheromone receptors (rodent).

Thrombin receptors

G-protein-coupled receptors desensitization

-Phosphorylation of G-protein-coupled receptors (GRKs).

- Arrestin binding.

-Receptor internalization.

-Homologous and heterologous desensitization

Constitutively active receptors

Allostery, inverse agonist.

Genetic disease

3. Key words:

signaling

通讯,信号传(转)导

agonist

激动剂

antagonist

拮抗剂

ligand

配体

affinity

亲和力

radioligand binding technique

放射配体结合技术

patch-clamp

膜片钳

homology screening

同源性筛选

oligonucleotide

寡核苷酸

homogenization

匀浆

elution

洗提

a-bungarotoxin

[生化] a-金环蛇毒素

tubocurarine

筒箭毒碱

ion channel receptors

离子通道受体

G-protein-coupled receptors

G-蛋白偶联受体

synapse

突触

glutamatergic

谷胺酸能的

presynaptic

突触前的

ionotropic

趋离子的

postsynaptic

突触后的

metabotrophic

趋代谢的

perisynaptic

突触周围的

ligand-gated ion channels

配体门控离子通道

hexamethonium

[]六甲铵(降血压药)

mecamylamine

[]梅坎米胺,四甲双环庚胺,盐酸-3-甲基氨基异樟脑烷(一种降压药)

erythroidine

刺桐定

strychnine

士的宁,番木鳖碱

barbiturate

[]巴比妥酸盐

neurosteroid

神经甾体

bicuculline

荷包牡丹碱

picrotoxin

[]木防己苦毒素,苦味毒(用作刺激剂)

benzodiazepine

[]()二氮

locus coeruleus

蓝斑

long-term potentiation (LTP) or long-term depression (LTD)

长时程增强(抑制)

crystallography

结晶学

cryoelectron microscopy

晶体电子显微成像术

dimerisation

二聚化

glucagons

胰高血糖素

calcitonin

降钙素

allosteric

[生化]变构()

Inverse agonist

反向激动剂

precocious puberty

早熟

retinitis pigmentosa

色素性视网膜炎

4. Questions:

1)      Please raise an example to describe how a kind of receptor is identified using combined pharmacological and cloning techniques.

2)      Please state the structural characteristics of nicotinic receptors at the neuromuscular junction.

3)      Please describe the structural characteristics of muscarinic receptors.

4)      What is special in the opening of NMDA receptors?

5)      Please briefly state homologous desensitization and heterologous desensitization. 

Chapter 4: Neurotransmitter release

1. Requirements:

1)      Be familiar with the neurochemical methods used to measure transmitter release.

2)      Appreciate how electrophysiological techniques can be used to investigate the release of neurotransmitter at a single synapse and to determine the effects of drugs and toxins on synaptic transmission.

3)      Be able to describe key experiments that have investigated the role of vesicles in neurotransmitter release.

4)      Understand the role of synaptic proteins in neurotransmitter release.

2. Contents:

Measurement of transmitter release

Ex vivo estimation of transmitter turnover rate

Concept and principle of turnover rate estimation.

In vitro techniques

In situ preparations: measurement of the concentration of transmitter in the efflux of stimulated, perfused nerve/end-organ preparation.

Synaptosomes: homogenization preparation; principle of transmitter release study; advantages and disadvantages; application in transmitter release study.

Brain slices: advantages: relative integrity of neurons and pathways; application in transmitter release study.

In vivo techniques

The cortical cup: principle; advantage and importance in the study of freely moving animals.

Microdialysis: principle. Advantages: allow for studes in (1) specific brain areas or nuclei; (2) in both conscious and anaesthetized animals; (3) in long-term. Concept of reverse dialysis.

Voltametry: principle and application: monoamines and metabolites. Advantage: sensitive in studying rapid, transient change of transmitter release.

Biosensors: leech; bioluminescent protein (aequorin); electrodes coated with glucose oxidase or lactate oxidase.

Where does the released transmitter come from?

Evidence of quantal release: neurocytochemistry and electron microscopy; Electrophysiology.

Transmitter storage vesicles

Large dense core vesicles (LDCV) and small dense core vesicles (SDCV). Synapsin marker.

Release versus storage pool

Active zone of synapse. Phosphorylation and dephosphorylation of synapsin in regulation of releasable and reserve pools of vescicles; roles of calcium and CAM kinase.

Vescicular exocytosis

Docking and fusion: The SNARE hypothesis.

Receptor-mediated modulation of Ca-dependent transmitter release

Autoreceptors-mediated; Heteroreceptors-mediated.

Coupling receptors with exocytosis

G-protein binding; Ca2+; K+ conductance.

Ca++-independet release of neurotransmitter

Carrier-mediated release: mechanism of amphetamine induced 5-HT release.

Heterocarrier-mediated release

3. Key words:

axolemma

轴膜

ex vivo

在体外

in vitro

离体的

in vivo

在体的

turnover rate of neurotransmitter

神经递质清除率

release pool

释放池

reserve pool

贮存池

synaptosome

突触小体

liquid scintillation counting

液闪记数

chromatographic

色谱(分析); 色谱法的

the cortical cup

皮层杯

vescicle

囊泡

quantal release

量子释放

chromaffin granules

嗜铬颗粒

freeze-fracture

冰冻蚀刻

large dense core vesicle (LDCV)

致密中心大囊泡

gluteraldehyde

戊二醛

small dense core vesicle (LDCV)

致密中心小囊泡

synapsin

突触素

endocytosis

[](细胞)内吞作用

exocytosis

胞吐作用, 胞吐现象

synaptobrevin

囊泡相关膜蛋白

tetanus

[]破伤风

syntaxin

 

synaptotagmin

 

connexin

连接素

autoreceptors

自受体

heteroreceptor

异受体

amphetamine

安非他明,苯丙胺

4. Questions:

1)      What is the theoretical assumption on which “turnover rate” is estimated?

2)      What are the advantages and disadvantages to study neurotransmitter release in synaptosomes?

3)      Please raise the methods you know that can study neurotransmitter release.

4)      Please raise the evidence you know that support quantal release of neurotransmitters.

5)      Please briefly describe SNARE hypothesis.

Chapter 6: Acetylcholine

1. Requirements:

1)      Master the substrates and sources, enzyme, process, and rate-limiting step in the biosynthesis of acetylcholine.

2)      Master the metabolism of Ach.

3)      Be familiar with the main distribution of cholinergic receptors and the main subtypes.

4)      Understand the functions of central and peripheral cholinergic system. Understand the significance of cholinergic receptors as target of pharmaceutical approaches.

2. Contents:

Introduction

Distribution of peripheral cholinergic receptors. Cholinesterase (ChE) and choline acetyltransferase (ChAT) in the mapping of central cholinergic system.

Neurochemistry

Site and process of the biosynthesis of acetylcholine in cholinergic neurons; source of the substrates; rate-limiting step of the synthesis. High-affinity and low-affinity uptake of choline. Hemicholium and triethylcholine as competitive substrates of choline.

Storage and release

Labile pool and fixed pool.

Mechanism of the toxicity of botulinum toxin and bungarotoxins.

Metabolism

Breakdown process of acetylcholine; acrtylcholinesterase or specific cholinesterase; butyrylcholinesterase or non-specfic cholinesterase; frequently used Anticholinesterases.

Receptors

Classificassion and structure

Nicotinic receptors: (please refer to Chapter 3).

Muscarinic receptors: classification with pharmacological (M1-M5) and molecular (m1-m5) methods; G-protein linkage of different receptor subtypes.

Distribution

Widespread but of unclear source.

Function

Nicotinic receptors:

Peripheral: Na+-mediated fast neurotransmission (in neuromuscular junction and autonomic ganglions). Central: enhancement of neurotransmission mediated through voltage-gated Ca++ Channels.

Muscarinic receptors: excitation of neurons via inhibition of voltage-dependent K+ conductance.

Agonists and antagonists

Common structure and mechanism of action.

Drugs and the different muscarinic receptors

Cholinergic pathways and function

Spinal cord

Neuromuscular junction, feedback circuit of Renshaw cell, receptor subtypes involved.

Triatum

Highest Ach concentration; intrinsic cholinergic innervation; interaction of Ach and DA system within striaum and the significance of this interaction in Parkinsonism.

Cortex

Cholinergic subcortical nuclei projecting to the cortex; role of cholinergic pathways in arousal and sleep.

Cognition and reward

3. Key words:

 

neuromuscular junction

神经肌肉接头

 

sympathetic

交感的

 

parasympathetic

副交感的

 

autonomic

自主神经的

 

leech

水蛭

clam

cholinesterase

胆碱脂酶

choline acetyltransferase (ChAT)

胆碱乙酰基转移酶

high-affinity uptake

高亲和力摄取

low-affinity uptake

低亲和力摄取

hemicholinium

密胆碱

triethylcholine

三乙基胆碱

labile pool

易变池

botulinum toxin

[]肉毒()菌毒素

botulism

食物中毒

blepharospasm

脸痉挛

cobra

眼镜蛇

interpeduncular

脚间的

caudate

尾核

raphe nucleus

中缝核

acetylcholinesterase

[生化]乙酰胆碱酯酶

butyrylcholinesterase

[生化]丁酰胆碱酯酶

anticholinesterase

[生化]抗胆碱酯酶(如毒扁豆碱)

physostigmine

[]毒扁豆碱(一种眼科缩瞳药)

neostigmine

[]新斯的明(治疗青光眼等的药)

pesticide

杀虫剂

tetrahydro aminoacridine

四氢氨基吖啶

sustantia nigra

黑质

nicotinic

[] 烟碱的, 烟碱酸的

muscarinic

毒蕈碱的

inosotal triphospate

三磷酸肌醇

hippocampus

海马

ventral tegmented area

腹侧顶盖区

carbamyl

[]氨基甲酰

oxotremorine

[]氧化震颤素

methylcarbachol

氨甲基胆碱

carbachol

[]卡巴可,氯化氨甲酰胆碱,碳酰胆碱

suxamethonium (succinylcholine)

[]琥珀胆碱,司可林, 丁二酰胆碱

gallamine:

[]加拉明

pancuronium

[]溴化双哌雄双酯,巴夫龙 (神经肌肉阻滞药或肌松药)

decamethonium

[]十烃季铵,十甲季铵,十烷双铵

hyoscine (scopolamine)

东莨菪碱

magnocellular forebrain nucleus (MFN)

巨细胞前脑核

nucleus basalis magnocellularis

基底巨细胞核

substantia innominata

无名质

medial septum

中隔

pontine tegmentum

脑桥被盖

pedunculopontine tegmental nucleus (PPPTN)

脚间脑桥被盖核

laterodorsal tegmental nucleus (LDTN)

背外侧被盖核

ascending reticular system

网状上行系统

rapid eye movement (RAM) sleep

快动相睡眠

lateral geniculate body

外侧膝状体

maze

曲径, 迷宫

amygdala

杏仁核

       

4. Questions

1)      Please describe the process of the biosynthesis of acetylcholine. What is the rate-limiting factor?

2)      Please describe the G-protein linkage of muscarinic receptor subtypes.

3)      Please describe the fate of the acetylcholine released into the synaptic cleft.

4)      What is the neurological mechanism of tetanus?

Chapter 7  DOPAMINE

1. Requirements:

7)      Knowing the methods for detecting dopamine neurons and projection pathways. Knowing the main pathways of dopamine.

8)      Holding the main nucleus clusters of dopamine cell bodies. Holding the life cycle of dopamine, including enzymes, transporters and regulation factors. Holding the classification and mechanisms of dopamine receptors.

9)      Understanding the synaptic effects and central functions of dopamine.

2.Contents:

1) Pathways of dopamine neurons

2) Neurochemistry of dopamine

2.1  synthesis (enzymes, regulation factors)

2.2  metabolism (enzymes, metabolites)

2.3  storage (vesicular uptake)

2.4  release and reuptake

3) Dopamine receptors

    3.1  classification

    3.2  distrubution and mechanisms

    3.3  agonists and antagonists

4) Synaptic effects

5) Central functions

3. Key words:

dopamine (DA)

多巴胺

catecholamine

儿茶酚胺

Substantia nigra

黑质

striatum

纹状体

tyrosine hydroxylase (TH)

酪氨酸羟化酶

dopa decarboxylase (DDC)

多巴脱羧酶

tetrahydropterine

四氢蝶啶

pyridoxal phosphate 

磷酸吡哆醛

autoreceptor

自身受体

monoamine oxidase (MAO)

单胺氧化酶

catechol-O-methyl transferase (COMT)

儿茶酚胺氧位甲基移位酶

transporter

转运体

reuptake

重摄取

chemical sympathectomy

交感神经化学切断术

vesicular monoamine transporter (VMAT)

囊泡单胺转运体

Parkinson’s disease

震颤性麻痹, 帕金森氏病

presynaptic

突触前

postsynaptic

突触后

schizophrenia

精神分裂症

psychology

心理学

tardive dyskinesia

迟发性运动障碍

paralysis

麻痹、瘫痪

 

Chapter 8  NORADRENALINE

1. Requirements:

1)      Knowing the methods for detecting noradrenaline neurons and projection pathways. Knowing the main pathways of noradrenaline.

2)      Holding the main nucleus clusters of noradrenaline cell bodies. Holding the life cycle of noradrenaline, including enzymes, transporters and regulation factors. Holding the classification and mechanisms of noradrenaline receptors.

3)      Understanding the central functions of noradrenaline.

2.Contents:

1) Pathways in CNS

2) Neurochemistry of NA

2.1  Synthesis (enzymes, regulation factors)

2.2  Storage

2.3  Release

2.4  Reuptake

2.5  Metabolism

3) Noradrenergic receptors

3.1  Classification

3.2  Mechanisms

4) Central function

3. Key words:

momoamine

单胺

catecholamine

儿茶酚胺

epinephrine (E)  

肾上腺素

norepinephrine (NE)

去甲肾上腺素

Retrograde tracing

逆向示踪

cortex

皮层

hippocampus

海马

tyrosine hydroxylase (TH)

酪氨酸羟化酶

dopa decarboxylase (DDC)

多巴脱羧酶

dopamine-b-hydroxylase (DbH)

多巴胺b羟化酶

Vesicular monoamine transporter (VMAT)

囊泡单胺转运体

Transmembrane-spanning domains (TMD)

跨膜域

exocytosis

胞裂外排

reserpine

利血平

chemical sympathectomy

交感神经化学切断术

reuptake

重摄取

locus coeruleus

蓝斑

 

Chapter 9  5-HYDROXYTRYPTAMINE

1. Requirements:

1)      Knowing the methods for detecting 5-HT neurons and projection pathways. Knowing the main pathways of 5-HT.

2)      Holding the main nucleus clusters of 5-HT cell bodies. Holding the life cycle of 5-HT, including enzymes, transporters and regulation factors. Holding the classification and mechanisms of 5-HT receptors.

3)      Understanding the central functions of 5-HT.

 

2.Contents:

1) Pathways and distribution in the CNS

2) Neurochemistry of serotonin

2.1  Synthesis (enzymes and regulation factors)

2.2  Storage

2.3  release

2.4  reuptake

2.5  metabolism

3) 5-HT receptors

3.1  classification

3.2  mechanisms

4) Central function

3. Key words:

hydroxytryptamine (5-HT)/ serotonin

5-羟色胺

raphe nucleus

中缝核

Indoleamine

吲哚胺

Tryptophan hydroxylase

色氨酸羟化酶

Tricyclic antidepressant

三环类抗抑郁剂

Selective serotonin reuptake inhibitors (SSRIs)

选择性5-HT重摄取抑制剂

depression

抑郁症

4.Questions for Chapter 7,8,9:

1.         Please describe the life cycle of one of the monoamine neurotransmitters.

2.         Please describe how NA (DA, or 5-HT) are transported from the synaptic cleft to the cytosol and ultimately into the vesicle.

3.         Both plasma NA transporter and vesicular monoamine transporter can uptake NA. What is different between the two uptake mechanisms?

4.         Tyrosine hydroxylase is the rate-limiting enzyme in NA synthesis. Are there any regulation factors on its activity?

5.         Please write down the main enzymes in the metabolism of catecholamine.

6.         Please explain where, and how, drugs can interact with the uptake of serotonin.

7.         Substantia nigra (locus coeruleus, or raphe nucleus) destruction, which neurotransmitter system will be affected?

Chapter 10  Amino acids: excitatory

1. Requirements:

1)      Understanding the key concepts in excitatory neurotransmission;

2)      Knowing the main components of glutamate synapses;

3)      Understanding the functional roles of excitatory amino acids;

4)      Developing knowledge of related clinical science subjects.

2. Contents:

1)  Introduction

    Major excitatory neurotransmitter: glutamate

2)  Neurochemistry of glutamate

    Glutamate produced from diverse origins

3)  Glutamate receptors

    AMPA and Kainate receptors; NMDA receptors; Metabotropic receptors

4)  Functional roles of excitatory amino acids

    Epilepsy; Pain; Memory; Excitotoxicity; Development

3. Key words:

Amino acid neurotransmitters

氨基酸类神经递质

Excitatory

兴奋性

AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole-proionic acid)    

 a-氨基-3-羟基-5-甲基-4-异噁唑-丙酸

AP5

NMDA受体拮抗剂

Brain ischemia

 大脑缺血

7-CK (7 chlorokynureic acid)

NMDA受体拮抗剂

CNQX (6-cyano-7-nitroquinoxaline)

AMPA受体拮抗剂

Co-existence

共存

CPP (3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid)

NMDA受体拮抗剂

Dextrophan

右吗喃,NMDA受体拮抗剂

Epilepsy

癫痫

Exitotoxicity

兴奋性毒

Glutamate (L-Glutamic acid)

谷氨酸

Glutamate receptors

谷氨酸受体

Metabotropic

代谢型

Glutamine Synthetase

谷氨酰胺合成酶

Function

功能

Inhibitors

抑制剂

In pain transmission

在痛觉传递中

Kainate (Kainic acid, KA)

红藻氨酸

Kainate receptors

红藻氨酸受体

Ketamine

氯胺酮,NMDA受体拮抗剂

Knock-out mice

基因剔除小鼠

Krebs cycle

三羧酸循环

Memantine

美金刚胺, NMDA受体拮抗剂

MK-801

NMDA受体拮抗剂

MPTP (1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine)

 1-甲基-4-苯基-1,2,3,6-四氢吡啶

Neuropathy

 神经病

NMDA (N-methyl-D-aspartate)

 N-甲基-D-天冬氨酸

NMDA receptors

 NMDA受体

Non-NMDA

NMDA

Noxious stimulus

有害刺激

Parkinson’s Disease (PD)

帕金森氏病

NBQX (6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione)

23-二羟基-6-硝基-7-氨磺酰苯喹喔啉,AMPA受体拮抗剂

Recognition sites

识别位点

Substance P

P物质

Synapse

突触

Tachykinins

速激肽

4. Questions:

1)  What is the difference between ionotropic and metabotropic neurotransmitter receptors?

2)  The structure of the NMDA-receptor complex and explain how it works.

3)  Define the terms agonist and antagonist, and provide examples.

4)  Explain the excitotoxicity of the glutamate.

5)      The main functional roles of glutamate in memory.

Chapter 11  Amino acids: inhibitory

1. Requirements:

1)      Knowing the structures and biosynthesis pathways of the two major inhibitory amino acid neurotransmitters;

2)      Understanding the main characteristics of three distinct GABA receptors and GABA transporters;

3)      Knowing the main pharmacology of inhibitory neurotransmission;

4)      Integrating the knowledge with related clinical science subjects.

2. Contents:

1)       Introduction

      Major inhibitory neurotransmitter: GABA; Glycine

2)  Neurochemistry of GABA

    Synthesis and catabolism; Storage; Uptake; Metabolism

3)  GABA receptors (GABAA, GABAB, GABAC)

    Pharmacology; Structure; Mechanisms

4)  Glycine

    Synthesis and catabolism; Storage; Uptake; Receptors

3. Key words:

ACHC (cis-3-aminocyclohexane-carboxylic acid)

GABA类似物,GABA再摄取阻断剂

Agonist

激动剂

b-Alanine

b-丙氨酸

Allylglycine

烯丙基甘氨酸,GAD竞争性抑制剂

Alphaxalone (3a-hydroxy-5a-pregnan-11,20 dione)

a-羟孕双醇,类固醇类

Aminooxyacetic acid

GABA-T抑制剂

Antagonists

拮抗剂

Anaesthetics

麻醉剂

APPA (3-aminopropyl phosphinic acid)

GABA类似物,GABA受体B激动剂

Baclofen (R-4-amino-3-(4-chlorophenyl)butanoic acid)

氯苯氨丁酸

Barbiturates

巴比妥酸盐

Benzodiazepines

()二氮( 用于制造各种镇静药)

Bicuculline

荷包牡丹碱

Binding sites

结合位点

b-Carboline

咔啉,GABA受体拮抗剂

Chloride equilibrium potential

氯离子平衡电位

Complex

复合体

DABA (2,4-diaminobutyric acid)

GABA类似物

Diazepam

安定

Distribution

分布

Etomidate

乙醚酯, 麻醉剂

Expression in Xenopus oocytes

在爪蟾卵母细胞中表达

Flumazenil

苯二氮的抗剂

GABA (g-aminobutyric acid)

g-氨基丁酸

Gabaculine (5-amino-1,3-cyclohexadienenecarboxylic acid)

GABA-T抑制剂

GABA receptors  

g-氨基丁酸受体

GABAA receptors

g-氨基丁酸受体A

GABAB  receptors

g-氨基丁酸受体B

GABAC receptors

g-氨基丁酸受体C

GABA-shunt

GABA代谢旁路

GABA transaminase (GABA-T)

GABA转氨酶

GABAzine

GABA受体A拮抗剂

Glutamic acid decarboxylase (GAD)      

谷氨酸脱羧酶

Glycine

甘氨酸

Glycine receptors

甘氨酸受体

Glycine transporters

甘氨酸转运蛋白

Guvacine

去甲基槟榔次碱,GABA类似物

Halothane

三氟溴氯乙烷,挥发性麻醉剂

Heterogeneity

异质性

Inhibitory

抑制性

Huntington’s Chorea

亨廷顿氏舞蹈病

Imidazopyridines

咪唑吡啶类,催眠药

Ionotropic

离子型

Isoflurane

异氟醚,挥发性麻醉剂

Isoforms

异构体

Mechanisms of action

作用机制

3-mercaptopropionic acid

3-巯基丙酸,GAD竞争性抑制剂

Metabolism

代谢

Muscimol

蝇覃醇,GABA 受体A激动剂

Neurochemistry

神经化学

Nipecotic acid

GABA类似物,GABA再摄取阻断剂

Pharmacology

药理学

Phencyclidine (PCP)

苯环已啶

Picrotoxin

印防己毒素

Presynaptic

突触前

Propanidid

麻醉剂的一种

Propofol

麻醉剂的一种

Purkinje cells

浦肯野氏细胞

Pyridoxal-5-phosphate (PLP)

5-磷酸吡哆醛

Pyridoxamine-5’-phosphate (PMP)

5-磷酸吡哆胺

Quisqualate (Quisqualic acid, Q)

使君子氨酸

Sarcosine (N-methyl glycine)

肌氨酸

Serine hydroxymethyltransferase (SHMT)

丝氨酸羟甲基转移酶

Storage

存储

Structure

结构

Strychnine

的士宁

Sub-units

亚单位

Succinic semialdehyde dehydrogenase (SSADH)

琥珀酸半醛脱氢酶

Succinic semialdehyde reductase (SSAR)

琥珀酸半醛还原酶

Synthesis

合成

Taurine

牛磺酸

TBPS (t-butylbicyclophophorothionate)

GABA受体A拮抗剂

THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol)

4,5,6,7-四氢异噁唑[5,4-c]-吡啶酮-3-

Tricarboxylic acid (TCA) cycle

三羧酸循环

Transporters

转运蛋白

Uptake

摄取

Valproate (2-propylpenatanoic acid)

2-丙基戊酸,GABA-T抑制剂

Vesicular inhibitory amino acid transporter (VIAAT)

小泡型抑制性氨基酸转运蛋白

Vesicular transporters

小泡转运蛋白

Vigabatrin (g-vinyl GABA)

氨己烯酸,GABA-T抑制剂

4. Questions:

1)      What is the precursor of the neurotransmitter called GABA?

2)      How are EPSP’s and IPSP’s induced in dendrites?  How do they change the membrane potential?

3)      What is the difference between GABA transporters and vesicular GABA transorter?

4)      How does GABAB receptor work?

5)      The main process of Glycine neurotransmission.

Chap 12  Peptides

1.      Requirements

1)        Understand neuropeptides classification, biosynthesize, release and breakdown; understand neuropeptides receptors  and the signal transduction of neuropeptides.

2)        Master co-existence of neuropeptides with classical neurotransmitters and function of peptides.

3)        Find out Mechanisms of action of opioid peptides

2.      Contents

1)    Classification of neuropeptides:

Opioid peptides, Tachykinins, Cholecystokinin, Neuropeptide Y, Vasopressin, Somatostatin, Neurotensin, CGRP, Galanin

2)    Neuropeptids:

Biosynthesize, storsge, release and breakdown.

3)    Co-existence of neuropeptides with classical neurotransmitters:

Comparing with interactions and physiologic significance.

4)    Opioid peptides:

Receptors; classification; structure-activity relationship; Agonists and Antagonists of opioid receptors; physiologic functions

5)    Tachykinin:

Characteristic of TK structures; TK receptors, physiologic functions.

6)    Cholecystokinin:

Characteristic of cholecystokinin; cholecystokinin receptors; physiologic functions.

7)    Neuropeptide Y, Somatostatin, Neurotensin, CGRP, Galanin:

Structures; receptors; physiologic functions.

3.      Key words:

neuropeptide

神经肽

post translation processing

翻译后加工

carboxypeptidase

羧肽酶

aminopeptidase

氨肽酶

co-existence

共存作用

synergism

协同作用

antagonism

拮抗作用

inhibition

抑制作用

promotion

促进作用

tachykininTK

速激肽

substance P ( SP)

P物质

neuropeptide Y (NP Y)

神经肽Y

vasopressin

加压素

calcitonin gene-related peptide (CGRP)

降血钙素基因相关肽

galanin

神经节肽

cholecystokinin (CCK)

胆囊收缩素

pancreozymin (PZ)

促胰液素

gastrin

胃泌素

b-endorphin

b-内啡肽

enkephalin

脑啡肽

dynorphins

强啡肽

orphanin

孤啡肽

pre-pro-opiomelanocortin, (POMC)

前孤啡肽原

pre-proenkephalin

前脑啡肽原

leucine-enkephalin (LE)

亮啡肽

methionine-enkephalin (ME)

甲啡肽

lipotropin

趋脂素

somatostatin

生长激素抑制素

neurotensin

神经降压肽

4. Questions

1)      What is the neuropeptides? Please illustrate the biosynthesis, storage, release and breakdown of neuropeptide.

2)      Recount the interactions and physiologic significance in coexistence of neuropeptides with classical transmitters.

3)      Recount the mechanism that CCK reduced the action of morphine analgesia.

4)      Specify the relationship between the bioactivity and structure of enkephalin.

Chap 13  Other Transmitters and Mediators

1.      Requirements

1)      Understand ATP fulfils the criteria for a NT and the role in the neural control of smooth function. Understand the synthesis, metabolism and receptors of these transmitters.

2)      Master the definition of neurosteroids and its characteristic; Master the  mechanism of neurosteroid actions. Master the production and actions of NO.

3)      Know well the excitotoxicity of NO.

2.      Contents

1)      The purines, ATP, and adenosine: structures and relationship between adenosine and ATP; synthesis, storage, release, metabolism, receptors, and the mechanism of ATP actions in CNS or PNS; physiological functions.

2)      Histamine (HA): synthesis, receptors and its distribution in CNS; physiological functions of HA.

3)      Neurosteroids: definition; synthesis and its regulations; correlative receptor and enzymes in synthesis and metabolism of neurosteroids; mechanism of actions;

4)      Nitric oxide (NO): Synthesis; cellular actions; pharmacology; function; nociception; Long-term potentiation.

5)      Adrenaline, Trypatmine, phenylethylamine, tyramine, Prostaglandins(PGs): synthesis, release and receptors and its functions.

3.      Key words

Purinergic nerves

嘌呤能神经

adenosine

腺苷

nociceptive

疼痛的,感受伤害的

Convulsant

痉挛

Histamine HA

组胺

Hay fever

干草热

mepyramine

美吡胺

promethazine

异丙嗪,抗氨荨

sedation

镇静

Tuberomammillary nucleus

结节乳头核

Limbic areas

边缘区

neurosteroid

神经甾体

genomic effect

基因效应

nongenomic effect

非基因效应

cholesterol

胆固醇

Pregnenolone PREG

孕烯醇酮

Progesterone PROG

孕酮

allopregnenolone (3a, 5a-ThPROG)

3a, 5a-四氢孕酮

dehydroepiandrosterone (DHEA)

脱氢表雄酮

corticosterone

皮质酮

Vigilance

不眠症,警惕症

adrenaline

肾上腺素

Tryptamine

酪胺

Phenylethylamine

苯丙胺

Tyramine

色胺

octopamine

鱆鱼胺

Prostaglandin

前列腺素

catatonia

紧张症

Nitric oxide (NO)

一氧化氮

 

4.      Questions

1)  How many types of purinergic receptors? What is the action mode?

2)  Why ATP is a neurotransmitter?

3)  What is the mechanism of neurosteroid actions? Please illustrate by GABAA receptor.

4)  How does NO biosynthesize in brain? What is the mechanism of NO in neuronal excitotoxicity?

Disease of the Basal Ganglia

1. Requirement

1)      Understanding the concept of disease of the basal gangliathe anatomy and functions of the basal gangliathe function of direct and indirect pathwaysthe etiology of Parkinson’s diseasethe principle the treatment for the Parkinson’s disease

2)      Possessing the knowledge of the anatomy and function of the nigrastrial pathway, neurotransmitters in the nigrastrial pathway,the causes of degeneration of dopamine neuron

2. Contents

1)Introduction

2)Anatomy of the basal ganglia

  The striatumthe caudate and the putamen

  The globus pallidus

  The substrantia nigra

  The subthalamic nucleus

  Neurotransmitters in the basal ganglia

3)The pathways

  Direct pathway

  Indirect pathway

4)Parkinson’s disease

  Pathology of dopamine neuron in the substantia nigra

  Etiology of Parkinson’s disease

  The mechanism of movement diorder of Parkinson’s disease

  The principle for therapeutics of Parkinson’s disease

3. Key Words

The basal ganglia

基底神经节

Neurodegeneration

神经元退行性变

Parkinson’s disease

巴金森病

Nigrastrital pathways

黑质纹状体通路

4. Questions

1)         What are the components of the basal ganglia?

2)         How are the structures of the basal ganglia connected?

3)         Describe the corticostriatal projections

4)         Describe the connections between subthalamus and globus pallidus

5)         Describe the importance of the nigrastrital pathways

6)         What is the role of the basal ganglia in relation tO the motor thalamus?

7)         What are the principal neurotransmitters and receptors associated with the basal ganglia?

8)         A disorder of the basal ganglia is indicated what signs?

9)         Can administration of dopamine cure Parkinson’S disease?Why?

10)     Describe the etiology Of neurodegeneration in the substantia nigra in PD

11)     Why dose lesioning the SThn or GP reduce the symptoms of PD?

Chapter 16 The Epilepsies

1. Requirements:

10)   Holding the definition, animal models, pathology of epilepsy; holding epilepsy-related neurotransmitters; holding approaches to the control of epileptic activity; holding antiepileptic drugs.

11)   Knowing the classification of epilepsy; knowing the mechanism underlying epileptic animal models; knowing the mechanism underlying the action of antiepileptic drugs.    

12)   Understanding the development of an epileptic seizure.

2. Contents:

1)  Definition of epilepsy

2)  Classification of epilepsy

3)  Animal models of epilepsy

4)  Cause of pathology of epilepsy

5)  Development of an epileptic seizure

6)  Neurotransmitters in epileptic activity

7)  Approaches to the control of epileptic activity

8)  Antiepileptic drugs

3. Key words:

epilepsy

癫痫

seizure

癫痫发作

Synchronous discharge

同步放电

Focus

癫痫灶

Temporal lobe epilepsy

颞叶癫痫

Partial seizure or epilepsy

部分性癫痫

Generalized seizures

全身性癫痫

Grand mal or tonic-clonic seizure

大发作或强直-阵挛发作

Petit mal or absence seizure

小发作或失神发作

Convulsion

惊厥

Myoclonic

肌阵挛

Electroencephalogram

脑电图

Spike wave

棘波

Electrical stimulation

电刺激

Chemical convulsants

化学致痫剂

Epileptogenesis      

癫痫发生

Depolarization

去极化

Sprouting

出芽

Kainic acid

海人藻酸

Kindling

点燃

Hippocampus

海马

Amygdala

杏仁核

4 Questions: 

1)  What is epilepsy?

2)  How are epileptic seizures classified?

3)  Please give one or two samples for animal models of generalized seizures and partial seizures?

4)  How is an epileptic seizure developed?

5)  Please describe GABA function in epileptic activity.

6)  Please list current approaches to control epileptic activity.

7)  Please briefly explain possible mechanism of action of antiepileptic drugs, including old ones (phenytoin, carbamazepine, ethosuximide, barbiturates, benzodiazepines, valproic acid) and new ones (lamotrigine, vigabatrin, tiagabine, gabapentin).

Chapter 17  Schizophrenia, Anxiety and Depression

1. Requirements:

1)        knowing symptoms of schizophrenia and aetiology of schizophrenia; therapy of schizophrenia; animal models of anxiety; drug treatments for anxiety; neurochemical basis of antidepressants 

2)        understanding the neurobiological basis of schizophrenia; the role of monoamines in anxiety; the role of central monoamine in depression

2. Contents:

1)        Schizophrenia

    symptoms of schizophrenia; aetiology of schizophrenia; neurobiology of schizophrenia; therapy of schizophrenia

2)        Anxiety

    animal models of anxiety; monoamines in anxiety; drug treatments for anxiety

3)        Depression

    central monoamine and depression; neurochemistry of antidepressants

3. Key words:

schizophrenia

精神分裂症

typical neuroleptics

典型抗精神病药

atypical neuroleptics

非典型抗精神病药

positive symptoms

阳性症状

negative symptoms

阴性症状

depression

抑郁症

affective disorders

情感性疾病

bipolar disorders

躁郁症

anxiety

抑郁症

4. Questions:     

1)        What is the neurobiological basis of schizophrenia?

2)        How are monoamines involved in anxiety?

3)        What are the roles of central monoamine in depression?

4)        What are the common features of schizophrenia, anxiety and depression?

Chapter18  Alzheimer Disease

1. Requirements:

1)      Knowing the the clinical symptoms, the prevalence and the etiology of Alzheimer’s disease (AzD); knowing the different types of senile plaques; knowing the relationship of neurotransmitters and memory, methods for testing memory function.

2)      Holding what is dementia; holding that the failure of Ach system is related to the toxicity of b-amyloid; holding the relation between tau protein and neurofibrillary tangles.

3)      Understanding the pathological changes of AzD; understanding the formation of b-amyloid and its effects; understanding the therapeutic strategy of AzD; understanding how to manipulate cholinergic system; relationship

2. Contents:

1)      Introduction

What is dementia? the causes of dementia; the clinical symptoms of Alzheimer’s disease (AzD); the prevalence of AzD; the pathological markers of AzD.

2)      Pathology

Senile plaques; neurofibrillary tangles; other pathological changes including neuronal loss, hirano bodies, cytoplasmic granulovacoular degeneration; formation of b-amyloid and its effects.

3)      Etiology

Genetic mutation; head injuries, aluminum, inflammation

4)  Neurotransmitter changes in Alzheimer’s disease

Acetylcholine (Ach); Ach and b-amyloid; monoamines; somatostatin, glutamate

5)  Neurotransmitters in memory processing

Memory and Long-term potentiation (LTP); acetylcholine and memory; glutamate and memory; other neurotransmitters.

6)  Therapy

Manipulation of neurotransmitters; attenuation of degeneration.

3. Key words:

Alzheimer’s Disease

 

b-Amyloid

 

Amyloid precursor protein

 

Senile plaque

 

Tau protein

 

Neurofibrillary tangle

 

Paired helical filament

 

Apolipoprotein E (ApoE)

 

Presenilin

 

Degeneration

 

Cerebral cortex

 

Hippocampus

 

Frontal temporal cortex

 

The nucleus basalis

 

Secretase

 

Acetylcholine

 

Choline acetyltransferase (ChAT)

 

Acetylcholinesterase

 

Cholinesterase

 

Muscarinic receptors

 

Nocotinic receptors

 

Glutamate

 

Long term potentiation (LTP)

 

5-Hydroxytryptamine (5-HT)

 

Norepinephrine (NA)

 

4 Review Questions:      

1What are the pathological changes in AzD brain?

1.  What are the pathological hallmarks of Alzheimer’s disease?

2.  The pathological changes of Down Syndrome are similar to those of AzD. Do you think that there are same mechanisms in these two diseases? Why?

3.  Is there a relationship between the toxicity of b-amyloid and clinical symptoms? Why

4.  Describe the changes of neurotransmitters in AzD brain.

5.  Describe the potential therapeutic strategies for AzD.

6.  Present evidences that the failure of Ach system is related to the toxicity of b-amyloid.

7.  Explain main evidences that Ach is implicated in memory.

8.  Describe the relationship between LTP and memory.

10. Describe the etiology of AzD.

 

第十五章  精神分裂症、焦虑症、抑郁症

教学内容

一精神分裂症

   精神分裂症的症状;病因;病理机制;动物模型;治疗

二焦虑症

   焦虑症的动物模型;焦虑症的发病机制;焦虑症的药物治疗

三抑郁症

   抑郁症的神经生物学基础;抗抑郁药的作用机制

 

教学要求

了解精神分裂症的症状和病因;理解精神分裂症的病理机制;了解精神分裂症的动物模型和治疗;了解焦虑症的动物模型;理解焦虑症的发病机制;了解焦虑症的药物治疗;理解抑郁症的神经生物学基础;了解抗抑郁药的作用机制

 

专业英文词汇

 

schizophrenia

精神分裂症

typical neuroleptics

典型抗精神病药

atypical neuroleptics

非典型抗精神病药

positive symptoms

阳性症状

negative symptoms

阴性症状

depression

抑郁症

affective disorders

情感性疾病

bipolar disorders

躁郁症

anxiety

抑郁症

 

Pain and analgesia

1. Requirement

1)    Understanding the concept of nociceptor, the components and functions of the descending pathway and the ascending pathway in pain modulationthe formation of pain sensation.

2)    Possessing the knowledge of the components of spinothalamic pathway, the Gate Theory, the function of the substantia gelatinosa in the transformation of nociceptive informationthe neurotransmitters in the pain modulationthe function of opiates

2. Contents

1)Introduction

2)Peripheral events in the initiation of pain

i)Sensory receptor-nociceptors

ii).Tissue damage and chemical mediators

3)Central events in the transmission of pain

i). Ascending pathway

  Sensory transmission in the spinal cord

  the spinothalamic pain pathway

  the trigemenal pathway

ii). Central inhibitory system

  Descending pmhw~

  Neurotransmission of descending pmhw~

  PAG

4)Analgesia-opiates

  History of endogenous opiate

  Opiate receptors

  Analgesic mechanism

5)Neurotransmitters in pain formation

  Spinal cord

  Suraspinal cord

3. Key word

Nociceptor

伤害性感受器

Hyperalgesia

痛觉超敏

Substantia gelatinosa

罗氏胶质区

Analgesia

镇痛

Spinothalamic pathway

脊丘束

Periaqueductal gray matter (PAG)

中央灰质

Descending pathway

下行(抑制)通路

Ascending pathway

上行(激活)通路

4. Questions

1)        Describe which parts of peripheral tissue participate the transformation of nociception to the brain?

2)        Describe the formation of pain

3)        Describe which parts of the central nervous system modulate pain sensationand how?

4)        Where within the body Can pain be modulatedand what causes its modulation?

5)        Where in the central nervous system does information about pain converge?

6)        Describe the deference between nociception and pain?

7)        Where does substantia gelatinosa (SG)locate in the spinal cord?

8)        Describe the main function of SG

9)        What is the main function of the spinothalamic pathway?

10)    What is the main function of the periaqueductal gray matter (PAG)?