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Abstract
The general formulation of a determinate solution problem is deduced for the
transverse vibrations of a thin loaded rod. The vibration frequencies of a thin
homogeneous rod carrying a concentrated mass as a function of the load’s
position and mass are exactly solved. The dynamic measurement method of
Young’s modulus of the rods is presented within this theory. Our measure-
ments of Young’s modulus in the dynamic method agree with those in the
traditional bending method, therefore the theory is verified by our experiments.

Keywords: transverse vibrations of a load rod, Youngʼs modulus, dynamic
measurement method

(Some figures may appear in colour only in the online journal)

1. Introduction

In college-level instruction on vibration and waves, the model is usually simplified as
vibrations of a single particle even for a tuning fork. Actually, the tuning fork consists of two
elastic rods and we need to analyze the transverse vibrations of these rods. The textbooks on
the method of mathematical physics have only the longitudinal vibrations of a rod [1–3] and
rarely refer to its transverse vibrations [4–6] with and without a load. Even in engineering
mathematics [4] and applied mathematics [5], the equation of motion on the vertical vibra-
tions of a thin long rod is only directly given and its derivation is not present. In the course of
the method of mathematical physics, the transverse vibrations of a rod were first introduced
by [6], but its deduction on the solving problem is too simple to follow by students. Even in
the mechanics of vibration, a fundamental course for a mechanics major, the instruction on
transverse vibrations of a rod is still simple [7, 8] although its longitudinal vibration is
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discussed with a load [7]. Earlier papers have addressed the problem of vibrating rods [9, 10].
In special textbooks [11], the exact solutions of the rod’s transverse vibrations are put
forward systematically, but only a few solutions at special conditions are given [12, 13]. It
is necessary to derive a general formulation of the determinant solution problem for the
transverse vibrations of a thin loaded rod, and find the exact solutions in general conditions.
Much work has been done on the more complicated case of anisotropic vibrations of rods.
For example, the greatest use of piezoelectric resonators is the famous 32.768 kHz
quartz tuning fork, including a review paper [14], the fabrication [15], and the analysis of
frequency [16]. Although this work treats only the isotropic case, which is a limiting work
in the mechanics major, we emphasize the physical foundation for undergraduates in the
physics major.

Knowledge of Young’s modulus is fundamentally important to understand the
mechanical behaviour of materials, such as metals, ceramic grinding stones, dental compo-
sites, and polymers [17–20]. Young’s moduli are determined traditionally by the static and
dynamic methods. In static measurements [21, 22], such as the classical tensile or com-
pressive test, a uniaxial stress is exerted on the material, and the elastic modulus is calculated
from the transverse and axial deformations as the slope of the stress-strain curve at the origin.
The static methods include the three-point bending [17–20], four-point bending [23], clamped
beam, and compression/tension stress, etc. A dynamic method of measuring Young’s mod-
ulus of stalloy was described in an earlier paper [24] using a loaded fixed-free bar vibrating in
flexure and developed to measure Young’s modulus of elasticity of a solid [25], carrying a
heavy mass of precise finite dimensions at the free end and giving the derivation of the
equation of motion. Dynamic methods [26–29] are more precise since they use very small
strains, far below the elastic limit and therefore are virtually nondestructive and allow
repeated testing of the same sample. These include the ultrasonic pulse-echo [27], bar
resonance methods [22, 28, 29], travelling or standing wave, bending/transversal or long-
itudinal wave, transient pulse generation, etc. Recently, a new vibration beam technique [30]
for the determination of the dynamic Young’s modulus has been developed, but without the
added loads. The dynamic methods redeem the defects that the static bending method cannot
be applied to the measurement of fragile materials. Our method has added a variable with the
loads at different positions and different masses.

For didactic purposes undergraduates majoring in physics, in this paper we derive a
general formulation of the determinant solution problem for the transverse vibrations of a thin
loaded rod, obtain an exact solution of the problem, and deduce a general relationship
between eigenfrequencies and the load’s position and mass. Different resonance frequencies
are measured by adding both the same mass to different positions of the rod and different
masses to the same position of the rod. We deal with Young’s modulus measurement method
based on the vibration of a thin long rod with added point mass. The elastic modulus is
calculated from the least square fit of frequency versus the square of the wave number
calculated from the characteristic equation. According to this model, a new kind of dynamic
measurement method of Young’s modulus is presented. This method is more comprehensive
and is advanced when it is not convenient to change the length of samples.

The paper is organized as follows. The mechanical model and the solution for the
eigenfrequencies as a function of the load’s position and mass are illustrated in section 2. A
practical implementation and the results of the experiments are described in section 3,
showing results in agreement with model predictions. A summary is given in section 6.
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2. The mechanical model and the solutions

We consider a rod of length l along the x-axis in equilibrium. The mass of the rod is

∫ ρ=m x x s xd ( ) ( )
l

0
with dx being the line element, ρ x( ) being the volume density, and

=s x w x h x( ) ( ) ( ) being the cross-section area. Here the width of the rod is =y w x( ) and the
thickness is =z h x( ). The turning radius of this cross-section r(x) satisfies

∫= =r x
h x

z z
h x

( )
2

( )
d

( )

12
. (1)

h x
2

0

( )
2

21
2

Figure 1 shows the diagram and cross-section of the thin homogenous rod. Let the mass
element be ρ τ=m xd ( )d with the volume element τ = s x xd ( )d , one obtains the rotational
inertia to the oy-axis as

ρ τ=I
h x

xd
( )

12
( )d . (2)yy

When the rod deforms transversely, its every cross-section should produce shearing
forces. Let the shearing force on the left of volume element be Q x t( , ) (down direction), and
the right one be ′ = + ∂Q Q x t Q x t x( , ) ( , )dx (up direction) with ∂x being an abbreviation of
∂ ∂x. These two shearing forces form a force couple, which bends the rod. Figure 2 shows an
element of a thin homogenous rod in bending.

We consider the characteristic quantity of the transverse vibrations of a thin loaded rod,
the displacement of the rod away from the equilibrium position along the z-direction at space-
time point (x,t), is u x t( , ). The curvature radius of the bending is

= + ∂ ∂⎡⎣ ⎤⎦( )R u u1 . (3)x xx
2

3
2 2

When the rod bends, the central line length dx remains unchanged. However, the upper part of
the central line that suffers the tension of the nearby elements is prolonged; the lower part that
suffers the pressure is compressed. Consequently, the force couple consists of tension and
pressure, the so-called bending moment. Let the bending moment on the left of the volume
element be M x t( , ) (clockwise), and the bending moment on the right be

′ = + ∂M M x t M x t x( , ) ( , )dx (counter-clockwise). The bending moments act as resistance
to the bending of the rod, and lead the system to the dynamic equilibrium states. Figure 3
shows the force acting on an element of a thin homogenous rod.

As shown in figure 2, we take a lamina with thickness dz at z position and width w(x). We
recall that the length is dx at the center line of the volume element. The length of the lamina is

θ+ = +R z x z x R( )d d d and the relative extension is z R. So that the tensile stress is
= −P Yz R with Y being Young’s modulus. The tension element is dG = Pwdz, the bending

moment element is = = −M z G Yz w z Rd d d2 , and the bending moment is

= −M YJ R, (4)

with ∫= =J z w z s x r xd ( ) ( )2 2 the inertia moment per mass for the cross-section s(x) to the
center ‐oy axis.

For the mass element ρ τx( )d of the bending rod, the inertia force is ρ τ− ∂x u( ) dtt
2 , the

external force is τf x t( , )d , and the external bending moment is m x t x( , )d . The equilibrium
equation of moment to the left center C is
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ρ+ ′ − = ′ − + + ∂M M M Q x Q x m x t x x u x x( ) d d ( , )d ( ) d
1

2
d . (5)c tt

2

Omitting the higher order (⩾2 order) small quantities, the reciprocal of the curvature radius is
simplified as ≃ ∂−R u x t( , )xx

1 2 and equation (5) becomes

∂ = +M x t Q x t m x t( , ) ( , ) ( , ). (6)x

Without the gravity, the equilibrium equation of force acting in the transverse directions is

ρ ∂ = ∂ +x u x t
s x

Q x t f x t( ) ( , )
1

( )
( , ) ( , ). (7)tt x

2

Substituting = − ∂M Ys x r x u x t( ) ( ) ( , )xx
2 2 into equation (6) and combining equations (6) and

(7), one obtains the general equation of motion as

Figure 1. Diagram and cross-section of a homogenous rod.

Figure 2. An element of thin homogenous rod in bending.
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ρ ∂ + ∂ ∂

= − ∂

⎡⎣ ⎤⎦x u x t
Y

s x
s x r x u x t

f x t
m x t

s x

( ) ( , )
( )

( ) ( ) ( , )

( , )
( , )

( )
. (8)

tt xx xx

x

2 2 2 2

This is just the Euler–Bernoulli equation [7, 8, 31]. For the thin homogenous rod with a load
of mass m′ at x′, equation (8) is simplified as

ρ δ∂ + + ′ − ′ ∂

= ⩽ ⩽ < ′ < ⩽ < ∞

⎡
⎣⎢

⎤
⎦⎥u x t

Yr

m

s
x x u x t

x l x l t

( , )
1

( ) ( , )

0, (0 , 0 , 0 ). (9)

xxxx tt
4

2
2

We take the variables separation method for = ωu x t X x( , ) ˜ ( )e ti with the normal vibration
circular frequency ω, and introduce three dimensionless lengths: space position

= ⩽ ⩽x x l x¯ (0 ¯ 1), load position ′ = ′x x l¯ , and displacement function =X x X x l( ¯) ˜ ( ) , X x( ¯)
satisfies the following eigenvalue equation

δ⁗ = + ′ − ′
⎡
⎣⎢

⎤
⎦⎥( )X x k

m

m
x x X x( ¯) 1 ¯ ¯ ( ¯), (10)4

with k being the dimensionless momentum. This parameter satisfies ω= ρk l

Yr
4 2

4

2 . From this

eigenvalue, the normal vibration circular frequency is ω ρ= −rl Y k2 2.
For the boundary conditions, if the end of x = 0 is fixed, then

= ′ =X X(0) (0) 0, (11)

with the notation of ′ = ∣ =X X(0) (d dx̄) x̄ 0, while the end of x = l is free,

″ = ‴ = ′ <( )X X x(1) (1) 0, ¯ 1 . (12)

We divide the finite region ⩽ ⩽x0 ¯ 1 into two parts: ⩽ ⩽ ′x x0 ¯ ¯ and ′ ⩽ ⩽x x¯ ¯ 1 with
< ′ <x0 ¯ 1. In = ′x x¯ ¯ , we have the following connection conditions. Integrating equation (10)

over x̄ on interval ′ ′− +x x[ ¯ , ¯ ] with ε′ = ′ ±±x x¯ ¯ , and then taking ε → +0 , we get

Figure 3. The forces acting on an element of a thin homogenous rod.
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‴ ′ − ‴ ′ = ′ ′ < ′ <+ −( ) ( ) ( ) ( )X x X x
m

m
k X x x¯ ¯ ¯ , 0 ¯ 1 . (13)4

There is a jump at ‴ ′X x( ¯ ) due to the rod carrying a concentrated mass at ′ ≠x̄ 1. If the load is
located at the endpoint of ′ =x l, equations (11) and (12) become

″ = − ‴ = ′
X X

m

m
k X(1) 0, and (1) (1). (14)4

For < ′ <x0 ¯ 1, the continuous connection conditions at the both sides of the jump are

′ = ′ ′ ′ = ′ ′ ″ ′ = ″ ′+ − + − + −( ) ( ) ( )( ) ( ) ( )X x X x X x X x X x X x¯ ¯ , ¯ ¯ , and ¯ ¯ . (15)

We use a linear combination of such allowed solutions, expressed as the sum of the
cosine wave, hyperbolic cosine wave, sinusoids, and hyperbolic sinusoids of kx̄, to describe
the transverse vibrations of a rod of length l clamped at end of x = 0. The solutions of
equation (10) are

= − + − ⩽ ⩽ ′< −( ) ( ) ( )X x A kx kx B kx kx x x( ¯) cosh ¯ cos ¯ sinh ¯ sin ¯ , 0 ¯ ¯ . (16)

= + + + ′ ⩽ ⩽> +( )X x C kx D kx F kx G kx x x( ¯) cosh ¯ cos ¯ sinh ¯ sin ¯, ¯ ¯ 1 .

(17)

They satisfy the conditions (11). From the conditions (12), we have

″ = − + −−
>k X C k D k F k G k(1) cosh cos sinh sin . (18)2

″′ = + + −−
>k X C k D k F k G k(1) sinh sin cosh cos . (19)3

From the continuous connection conditions in equation (15) with ′ ≡ ′k kx̄ , we have

′ − ′ + ′ − ′
= ′ + ′ + ′ + ′
A k k B k k

C k D k F k G k
(cosh cos ) (sinh sin )

cosh cos sinh sin , (20)

′ + ′ + ′ − ′
= ′ − ′ + ′ + ′
A k k B k k

C k D k F k G k
(sinh sin ) (cosh cos )

sinh sin cosh cos , (21)

′ + ′ + ′ + ′
= ′ − ′ + ′ − ′
A k k B k k

C k D k F k G k
(cosh cos ) (sinh sin )

cosh cos sinh sin . (22)

The jump at equation (13) leads to

− ′ − ′ − ′ + ′
+ ′ + ′ + ′ − ′

= ′ ′ − ′ + ′ − ′

A k k B k k
C k D k F k G k

k
m

m
A k k B k k

(sinh sin ) (cosh cos )
sinh sin cosh cos

[ (cosh cos ) (sinh sin )]. (23)

Six equations (18)–(23) comprise a set of linear homogeneous equations with six
coefficient variables (A B C D F G, , , , , ), in which the physical variables are ′m m and ′x l
with the parameter k to be determined. The condition of non-zero solution of equations (18)–
(23) is the vanishing determinant. So the eigenvalue equation of k is
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′
+

= ′ ′ − ′ ′ + − ′ − ′
− − ′ − ′ + ′ − ′
− ′ − ′

m

m k
k k

k k k k k k k k
k k k k k k k k
k k k k

2
(1 cos cosh )

sin cosh cos sinh sinh( )cos( )
sin( )cosh( ) sin cosh cosh( )
sinh cos cos( ). (24)

From this equation we can obtain the eigenvalues kn as a function of ′ ′x l m m, for
=n 0, 1, 2 ,.... They determine the available frequencies of the rod

ω
ρ

= ′ ′⎜ ⎟⎛
⎝

⎞
⎠

r

l

Y
k

x

l

m

m
, . (25)n n2

2

In some special cases, equation (24) can be simplified. For example, it becomes equation (6)
of [13] for = ∞c (the end of x = l is hinged by a rotational spring of constant stiffness c;
in our work, it is easy to include the finite c). It also becomes + =k k1 cos cosh

−′k k k k k(sin cosh cos sinh )m

m
for ′ =x̄ 1. It can further be simplified as

+ =k k1 cos cosh 0 for ′ =m 0 without a load. In this case, Young’s modulus is
ρ=Y l f h38.32 4 2 2 after solving the fundamental eigenvalue k0 with ω π=f (2 ). This is

the theoretical basis of Young’s modulus measurement in the traditional dynamic method
[17]. And now we extend it by adding two degrees of freedom of ′x l and ′m m. The
traditional dynamic method is only a special case of our model.

3. Experiments and results

Experimental setup consists of the following apparatus: two thin homogenous rods, several
magnet loads, an oscilloscope, two supports and bases, and a photometer. We do not draw the
schematic diagram of the experimental apparatus and setups. The heavy base is used to fix the
homogenous rod. The photometer records the time intervals of the rod blocking light and
outputs the voltage signal to the oscilloscope. There is a linear light source on one side of the
photometer and a photo-resistor on the other side. The light intensity changes the resistance of
photometer, which changes the voltage of the photo-resistor. Without obstruction in front of
the photometer, the light irradiates the photo-resistor to lower its resistance; otherwise, the
resistance increases. Thus, the vibration frequencies of the rod can be read by observing the
periods of the voltage signal.

In the experiments, we put two magnet loads at x′ of the rod on the y-direction sym-
metrically, and clap the endpoint of x = l to start the transverse vibrations. In the beginning,
there is a fundamental frequency and higher harmonic frequencies. After a moment, the
higher harmonic frequencies decay quickly, and the rod vibrates at the fundamental fre-
quency. At this time, the fundamental frequency can be read out by observing the wave shape
on the oscilloscope. By adding two magnet loads at the same position symmetrically, we
measure the fundamental frequency and obtain the mass-dependent fundamental frequency at
the fixed x′. For a given x′, on the other hand, the eigenvalues k, which correspond to the
different mass of loads, are obtained by solving equation (24) numerically. From
equation (25), it is clear that the fundamental frequency is proportional to k2. Thus Young’s
modulus can be fitted by the least square method according to the linear relationship between
frequencies ω and eigenvalues k2.

In the similar approach, keeping the masses of loads and changing the positions of loads,
the eigenvalues k that correspond to the different positions of loads are solved from
equation (24) numerically and Young’s modulus can be fit by the least square method.
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From equation (24), we can see that ζ=f k2 with the slope ζ =
π ρ

eq

l

Y1

2 2
. For two kinds of

thin homogeneous rods, iron (Fe) and copper (Cu), the experimental parameters are l = 0.26
m, = × −h 1.020 10 3 m, = × −r 2.945 10 4 m, and ρ = ×7.90 103 kg m−3, and l = 0.26 m,

= × −h 1.027 10 3 m, = × −r 2.965 10 4m, and ρ = ×8.34 103 kg m−3, respectively. Our
observations for f and calculation on k2 versus the different masses of the loads are shown in
figure 4. The red dots (blue squares) are the experimental data for the Fe (Cu) rod; while the
red line (blue line) is the theoretical result for the Fe (Cu) rod. By using the least square
method and data from figure 4, we obtain the slope ζ = ±(3.31 0.05)HzFe and Young’s
modulus = ± ×Y (1.81 0.03) 10Fe

11 Nm−2 for the iron rod, and the slope
ζ = ±(2.49 0.05)HzCu and Young’s modulus = ± ×Y (1.06 0.03) 10Cu

11 Nm−2 for the
copper rod. The speeds of sound for the shear wave ρ=v Y are = ×v 4.787 10Fe

3 m s−1

and = ×v 3.565 10Cu
3 m s−1 in our experiments.

With a similar approach, our observations for f and calculation on k2 versus the different
positions of the loads are shown in figure 5. We obtain ζ = ±(3.27 0.05)HzFe and

= ± ×Y (1.75 0.02) 10Fe
11 Nm−2 for the iron rod, and ζ = ±(2.43 0.05)Cu Hz and

= ± ×Y (1.00 0.01) 10Cu
11 Nm−2 for the copper rod.

To compare our method with other methods, we independently determine Young’s
modulus of the above rods with the three-point bending method [17–20]. This is a traditional
method in experimental physics that teaches measuring of Young’s modulus of materials. The
displacement Δz at the position of loads =x l 2 is linear with the total mass ′ = ′ +M m M ,
i.e., Δ ξ= ′z M with the slope ξ = d g

h wY4

3

3
, the load mass m′ and the tray mass M. Here

=d 0.23m is the distance between the support, g is the gravitational acceleration, and
=w 0.023m is the width of the rod.
Our observations for Δz as a function of m′ are shown in figure 6. The red dots (blue

squares) are the experimental data for the above Fe (Cu) rod, while the red line (blue line) is
the linear fitting for the same Fe (Cu) rod. Here, ξ is the slope of the straight line and ξM is its
ordinate at the origin. From figure 6, we can fit the slopes ξ = 0.0066Fe m kg−1 and

Figure 4. The vibration frequencies f in the units of Hz versus the dimensionless
eigenvalues k2 with the different load masses for two kinds of thin homogenous Fe
(red) and Cu (blue) rods.
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ξ = 0.0109Cu m kg−1, and Young’s moduli = ± ×Y (1.79 0.02) 10Fe
11 Nm−2 and

= ± ×Y (1.07 0.02) 10Cu
11 Nm−2.

4. Discussions and conclusions

The results of Young’s moduli are all essentially the same for three methods and the relative
error is about 2%. From the effective radius of our rod π =wh 0.0027 m ≪ =l 0.26 m, it

Figure 5. The vibration frequencies f in the units of Hz versus the dimensionless
eigenvalues k2 with the different load positions for two kinds of thin homogenous Fe
(red) and Cu (blue) rods.

Figure 6. The displacement Δz in the units of −10 m3 versus the mass m′ of loads in the
units of 10−3kg for two kinds of thin homogenous Fe (red) and Cu (blue) rods.
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is indeed a thin rod and enables us to appreciate the validity of the linear approximations.
The amplitude of vibration dependence (maximum level of used stress/strain compare to the
elasticity limits) is also in the linear regime. The mechanical quality of all bars used for
the measurement was high enough not to influence the measurement method’s accuracy
substantially. So this is a new dynamical method to measure Young’s modulus of a rod, in
which we extend the frequency to the load’s position and mass dependent eigenvalue.

The method that changes mass of loads is better than the one that changes positions
of loads. This is because (1) the mass of the rod = × −m 48.12 10 kg3 is comparable to the
mass of the loads ′ = ∼ × −m (10 90) 10 kg3 and (2) the load is approximated to a point mass
and described by Dirac function δ − ′x x( ). However, the added magnets in the practical case
have finite sizes. Since the higher harmonic frequencies decay quickly due to the vibration
damping, the rod vibrates at the fundamental frequency.

The results illustrated in this article are potentially interesting for educational purposes
for undergraduate physics students. For graduate students, the elastic plates, which have
rotatory inertia and shear [32], and the rods, which have nonlinear elastic effects [31, 33], are
especially interesting in a didactic nature.

In summary, we have constructed the general formulation of a determinant solution
problem for the transverse vibrations of a thin loaded rod. We have exactly solved the
vibration frequencies of a thin homogeneous rod carrying a point mass as a function of loads
position and mass. Based on this model, we have presented a new kind of dynamic mea-
surement method of Young’s modulus. Young’s modulus of the rod is determined by
recombining the model and measurements. This method avoids the disadvantages of the
bending method that cannot measure fragile materials. Compared to the traditional dynamic
method, our method does not need to change the length of the sample and only needs to
change the load’s mass or position, so it has advantages when the length of the rod is difficult
to change. The theory on fast determination of Young’s modulus has been verified by our
experiments and calculations in this new dynamic method. Theoretical analysis and experi-
mental results suggest that the proposed method is a useful tool to study the dynamics of
the rods.
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