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Dynamic programming

O Dynamic programming 1s typically applied to
optimization problems.

O There can be many possible solutions in optimization
problems.

O Each solution has a value, and we wish to find a
solution with the optimal (minimum or maximum)
value.
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Brute-force

Check every way through a factory and choose the
fastest way.

Analysis
* Checking = O(n) time per way.
* 2" possible ways to choose stations.
* Worst-case running time = O(n2")
= exponential time.

It Is Infeasible!



Structure of manufacturing problem

O An optimal solution to a problem (finding the fastest way
though station S;;) contains within it an optimal solution to
subproblems (finding the fastest way through either S, ;| or

Sj 1)
O Suppose that the fastest way through station S, ; is either
* the fastest way through station S, ;_; and then directly
through station S, ;, or
* the fastest way through station S, ; |, a transfer from line 1
to line 1, and then through station S, ;.

O Suppose that the fastest way through station S, ; 1s through
station S ; ;. The key observation is that the chassis must have
taken a fastest way from the starting point through station S ;.



Recursive solution

f.[]] denote the fastest possible time to get a chassis

from the starting point through station 5;;.
e; denote an entry time for the chassis to enter

assembly line I.
. denote an exit time for the completed auto to exit

assembly line I.
8;; denote the assembly time required at station S;;.

.. denote the time to transfer a chassis away from
assembly line I after through station S;;.

Our ultimate goal is:
f* = min(f,[n] + X,, f,[n] + X,).



Recursive solution (cont.)

We obtain the recursive equations

e, +a, if] =1,
f il =
(1] min(fl[j — 1]+ al,j9 f2D — 1]+ tz,j—l—l_ au-) if" =2,

o [E2 T A ifj =1,
e min(f[J — 1] +ay;, fJ — 1]+t +ayy) if ] 2 2.

l.[]] denote the line number I, whose station | — 1 is
used in a fastest way through station S;;.
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Matrix multiplication

\
L]

Output: C=[c;]=A"B. |

for i < 1 to rows[A]
do for j < 1 to columns[B]
doc;«< 0
for k < 1 to columns[A]
do cj; « Cjj + ay - Dy

Number of scalar multiplications
= rows[A] x columns[A] x columns[B]



Matrix-chain multiplication

A,: 10 x 100,
A,: 100 x 5,
A;: 5 % 50.
(A Ay) Ay)
10 x 100 x 5= 5,000
10 x5 x50 =2,500
(A (A, A))
100 x 5 x 50 =25,000
10 x 100 x 5=50,000
First parenthesization is 10 times faster.

} —==> 5,000 + 2,500 = 7,500

} ==> 25,000 + 50,000 = 75,000



Matrix-chain multiplication

Given a chain <A, A,, ..., A > of n matrices, where
for1=1, 2, ..., n, matrix A; has dimension p; ; X p;,
fully parenthesize the product A /A,... A, 1n a way that
minimizes the number of scalar multiplications.

* We are not actually multiplying matrices. Our goal
is only to determine an order for multiplying
matrices that has the lowest cost.

* Typically, the time invested in determining this
optimal order 1s more than paid for by the time

saved later on when actually performing the matrix
multiplications
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Brute-force

P(n): denote the number of alternative parenthesizations
of a sequence of N matrices.

We obtain the recurrence
1 ifn=1,

P(n) =+ EP(k)P(n—k) ifn=2.

This recurrence is the sequence of Catalan numbers,
which grows as Q(4" / n*’2).

It Is Infeasible!



Structure of an optimal parenthesization

O Any parenthesization of the product A;...A; must split the
product between A, and A, ., for some integer k in the range
| < k <]. For some k, we first compute the matrices A,...A, and
Ay:1---Aj and then multiply them together to produce the final
product A;...A;.

O Suppose that an optimal parenthesization of A;...A; splits the
product between A, and A, . Then the parenthesization of the
"prefix” subchain A,...A, within this optimal parenthesization
of A;...A; must be an optimal parenthesization of A;...A,.

O We can build an optimal solution to an instance of the matrix-
chain multiplication problem by splitting the problem into two
subproblems, finding optimal solutions to subproblem, and
then combining these optimal subproblem solutions.



Recursive solution

m[1,J] denote the minimum number of scalar

multiplications needed to compute the matrix
AI oo .Aj.

We obtain the recursive equations

I<k<j

N 0 if i =j,
mlL)] = min{m[1l,K]+m[K+1, j]]+ p,, P P;} if 1 <].

Our goal is m[1,n].
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2.2@DCV@D €.DEDEIED CL.DEDCIE-D

D BB (2.2G9WDE.2

Overlapping subproblems



Recursion tree

E2GHEIED C.DEDEIED C.DEDCIE.-D

C.DEDEDE.3 DD

Overlapping subproblems



Computing the optimal costs
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Computing the optimal costs
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Computing the

optimal costs
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Constructing an optimal solution
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Flements of dynamic programming

Optimal substructure

* Dynamic programming builds an optimal solution to the
problem from optimal solutions to subproblems.

* The solutions to the subproblems used within the optimal
solution to the problem must themselves be optimal by using
a "cut-and-paste" technique.

e Subproblems are independent.

Overlapping subproblems

* Recursive algorithm revisits the same problem over and over
again.

* In contrast, a problem for which a divide-and-conquer approach
1s suitable usually generates brand-new problems at each step
of the recursion.



Divide-and-conquer algorithm

IDEA:
N x N matrix = 2 *x 2 matrix of (n/2) % (n/2) submatrices:

HAEBHIFS

r=ae+bg ) .
Frecursive
s = af + bh > 8£nults of (n/2) % (n/2) submatrices

t=ce+dg | 4addsof(n/2) x (n/2) submatrices
u=cf+dh |




Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v

consisting the fewest edges.

* Unweighted longest simple path: Find a path from

U to v consisting the most edges.
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Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v
consisting the fewest edges.

* Unweighted longest simple path: Find a path from
U to v consisting the most edges.
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Independent

O Subproblems in finding the longest simple path are
not Independent, whereas for shortest paths they are.

O Subproblems being independent means that the
solution to one subproblem does not affect the
solution to another subproblem.

O For longest simple path problem, we choose the first
path U - s — v — 1, and so we have also used the
vertices S and . We can no longer use these vertices
in the second subproblem.

O Our use of resources in solving one subproblem has
rendered them unavailable for the other subproblem.



Four steps of development

* Characterize the structure of an optimal solution.

e Recursively define the value of an optimal solution.

* Compute the value of an optimal solution in a
bottom-up fashion.

* Construct an optimal solution from computed
information.



Longest Common Subsequence

Given two sequences X[1 ... m]and y[I ... n], find a
longest subsequence common to them both.

xx A B C B D A B

P N . BCBA = LCS(X, y)

v B D C A B A




Brute-torce LLCS algorithm

Check every subsequence of x[1 ... m] to see 1f 1t 1s
also a subsequence of y[1 ... n].

Analysis
* Checking = O(n) time per subsequence.
* 2M subsequences of X (each bit-vector of length m
determines a distinct subsequence of X).
* Worst-case running time = O(n2M)
= exponential time.

It Is Infeasible!



Optimal substructure of an LLCS

Given a sequence W = <w,, W,, ..., W >, define the ith

prefix of W, for1=0, 1, ..., m,as W, =<w,, w,, ..., W>

Let X= <X, Xy, ..., Xand Y =<y, Y,, ..., y,> be

sequences, and let Z =<z, z,, ..., z,> be any LCS of X
and Y.

o Ifx,=Vy,thenz, =x_ =y, and Z,_, 1s an LCS of
Xoand Y .

e Ifx,# V., thenz, # X and Zisan LCS of X _, and Y.
° Ifx, # V., thenz, # vy, and Zisan LCS of Xand Y, _,.



Recursive solution

Let us define c[l, || to be the length of an LCS of the
sequences X; and Y.

The optimal substructure of the LCS problem gives the
recursive formula.

r

0 if 1 =0 or | =0,
cli,jj=<cli—1,]—1]+1 if I,] > 0 and x; =,
max(c[l, j — 1], c[i = 1, j]) if I, ] > 0 and X; 7 ;.
1 2 i m
X:
1 2 — J n
Y:

Our goal is c[m, n]
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Computing LLCS




o M
) ¥ <
Q| 20O
L 2D
2 -
p " —
&
O
O
]

@)

o

@

@

@)

@)

@)

@)

@)

X < m oo A<M

Oiem O <« N OO < O O I~




Computing LLCS
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2}

0
Yi

1 2 3 4 5 6
B DCABA

O

0

O

0]

O
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X, # Y, and
c[0, 1] = c[1, 0] then
cl1, 1]=¢[0, 1]
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Computing LLCS

c[0, 3]+ 1
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Computing LLCS
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0
Yi

1 2 3 4 5 6
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O

O

0)
)
0)

)
1
0)

)
1
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N

1

X, 7 Y5 then
c[0, 5] < c[1, 4] then
c[l,5]=c[l, 4]
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Any question?

Xiaoqing Zheng
Fundan University



