Data Structures and Algorithm
. 422 e

Xiaoqing Zheng
zhengxg@fudan.edu.cn

= ’

........

Dynamic programming

O Dynamic programming 1s typically applied to
optimization problems.

O There can be many possible solutions in optimization
problems.

O Each solution has a value, and we wish to find a
solution with the optimal (minimum or maximum)
value.

Manufacturing problem

Station Station Station Station Station Station
51,1 51,2 31,3 S1,4

Sis i
Assemblylinel @ e Q e 9
@ /606 ® &
Chassis Completed
enters auto exits
D @\O\@\@\®\ &
Assembly line 2 (8)=>(5 y=>(6 >4)=>(5 (7,

Station Station Station Station Station Station
32,1 Sz,z 32,3 52,4 52,5 82,6

Brute-force

Check every way through a factory and choose the
fastest way.

Analysis
* Checking = O(n) time per way.
* 2" possible ways to choose stations.
* Worst-case running time = O(n2")
= exponential time.

It Is Infeasible!

Structure of manufacturing problem

O An optimal solution to a problem (finding the fastest way
though station S;;) contains within it an optimal solution to
subproblems (finding the fastest way through either S, ;| or

Sj 1)
O Suppose that the fastest way through station S, ; is either
* the fastest way through station S, ;_; and then directly
through station S, ;, or
* the fastest way through station S, ; |, a transfer from line 1
to line 1, and then through station S, ;.

O Suppose that the fastest way through station S, ; 1s through
station S ; ;. The key observation is that the chassis must have
taken a fastest way from the starting point through station S ;.

Recursive solution

f.[]] denote the fastest possible time to get a chassis

from the starting point through station 5;;.
e; denote an entry time for the chassis to enter

assembly line I.
. denote an exit time for the completed auto to exit

assembly line I.
8;; denote the assembly time required at station S;;.

.. denote the time to transfer a chassis away from
assembly line I after through station S;;.

Our ultimate goal is:
f* = min(f,[n] + X,, f,[n] + X,).

Recursive solution (cont.)

We obtain the recursive equations

e, +a, if] =1,
f il =
(1] min(fl[j — 1]+ al,j9 f2D — 1]+ tz,j—l—l_ au-) if" =2,

o [E2 T A ifj =1,
e min(f[J — 1] +ay;, fJ — 1]+t +ayy) if] 2 2.

l.[]] denote the line number I, whose station | — 1 is
used in a fastest way through station S;;.

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)=>(2)=>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

o

Station Station Station Station Station Station

Sz,l Sz,z Sy3 S2,4 Sz,s 82,6
i 1 2 3 4 5 6 i 2 3 4 5 6
f,0] 1,[]]
f,0] 1,[]]

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)=>(2)=>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

o

Station Station Station Station Station Station

Sy S)o S)3 Sy4 Sy S)6
i 1 2 3 4 5 6 i 2 3 4 5 6
f011 9 l,[]]
f,0] 1]

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)=>(2)=>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

o

Station Station Station Station Station Station

Sy Sy 313 Sy4 Sys S26
i 1 2 3 4 5 6 i 2 3 4 5 6
L0l 9 (1]
LOl{12 1]

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)>(2)=>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

o

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
f,lil| 9 |18 L[1] 1
f,1{12 1,[j]

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 S1,5 51,6

09796?9’2? ’
© o‘ e‘ o

Assembly line 1

Chassis
enters

Completed
auto exits

Js

©
e‘
Assemblylinez e G o

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
f,lil| 9 |18 L[1] 1
LU1112]16 LT 1

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)>(2)>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

o

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
f,0]11 9 (18(20 LOIf1]2
LU1112]16 LT 1

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)>(2)=>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

Jos

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
f,0]1 9 (18(20 LOoIf1]2
LU1112]16]22 LOI[1]2

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)=>(2)=>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

Jos

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
f,0]11 9 (18(20|24 LoIf1{2]1
LU1112]16]22 LOI[1]2

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

5 S
(7)=>(2)=>(3) 0,0
Completed
auto exits
e A

Assembly line 1

Chassis
enters

Jos

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
f,0]11 9 (18(20|24 LoIf1{2]1
LbU1112]16]22(25 LOIf1(2]1

Computing the tastest times

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

Sis S
(9)=>(3, (4,
Chassis Completed
auto exits
6 e‘e

enters 6

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

Assembly line 1

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Constructing the fastest way

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 1.6

Sis S
(9)=>(3, (44
Chassis Completed
auto exits
6 e‘e

enters 6

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

Assembly line 1

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Constructing the fastest way

Station Statlon Station Station Station Station
S 12 S 3 S 4 S 5 S 6

Completed
auto exits

Chassis
enters

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Constructing the fastest way

Station Statlon Station Station Station Station
S 12 S 3 S 4 S 5 S 6

Completed
auto exits

Chassis
enters

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Constructing the fastest way

Station Statlon Station Station Station Station
S 12 S 3 S 4 S 5 S 6

Completed
auto exits

Chassis
enters

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Constructing the fastest way

Station Statlon Station Station Station Station
S 12 S 3 S 4 S 5 S 6

Completed
auto exits

Chassis
enters

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Constructing the fastest way

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 S1,5 51,6

Completed
auto exits

Chassis
enters

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1f2]1]2]2

Constructing the fastest way

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 S1,5 51,6

Completed
auto exits

Chassis
enters

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Constructing the fastest way

Station Station Station Station Station Station
S1,1 S1,2 31,3 S1,4 S1,5 51,6

Completed
auto exits

Chassis
enters

Station Station Station Station Station Station
Sz,l Sz,z 52,3 S2,4 Sz,s 82,6

i 1 2 3 4 5 6 i 2 3 4 5 6
filil| 9 [18]20[24[32[35] .._,, 'Wf1]2f1[1]2],
f.i1[12]16]22|25/30]37 if1]2]1]2]2

Matrix multiplication

\
L]

Output: C=[c;]=A"B. |

for i < 1 to rows[A]
do for j < 1 to columns[B]
doc;«< 0
for k < 1 to columns[A]
do cj; « Cjj + ay - Dy

Number of scalar multiplications
= rows[A] x columns[A] x columns[B]

Matrix-chain multiplication

A,: 10 x 100,
A,: 100 x 5,
A;: 5 % 50.
(A Ay) Ay)
10 x 100 x 5= 5,000
10 x5 x50 =2,500
(A (A, A))
100 x 5 x 50 =25,000
10 x 100 x 5=50,000
First parenthesization is 10 times faster.

} —==> 5,000 + 2,500 = 7,500

} ==> 25,000 + 50,000 = 75,000

Matrix-chain multiplication

Given a chain <A, A,, ..., A > of n matrices, where
for1=1, 2, ..., n, matrix A; has dimension p; ; X p;,
fully parenthesize the product A /A,... A, 1n a way that
minimizes the number of scalar multiplications.

* We are not actually multiplying matrices. Our goal
is only to determine an order for multiplying
matrices that has the lowest cost.

* Typically, the time invested in determining this
optimal order 1s more than paid for by the time

saved later on when actually performing the matrix
multiplications

Join

student [Z4ZFE F4HZ]
course [IREERFR HUMER]
grade [ZZ4£ZE BEERIR]
teacher [ZMEE ZMERFR]

U

[FEEZES FERR RIERAIR G Bt 2UMERAR]

Join

where course.#lfldF=teacher.8qlptd=

course teacher
SRR | FPda | | bt | FUHERER
Web i FEEAH R tanall] M
HIEEWERELE | TI5#- CITE IR
JavafgFiRit kg ZIIE ElIE ¢S
ﬂ' Cartesian Product
FRfr | #ihid | 2hmides | 2RUMERER
Web i FHERH tanal] tanall] gl
Web iz FHERH faal] B S IR
WebIFEER | wa) | BsE | B |
HIEEWEELE | I5E- tanal] i
HIEEWNEEL | A5 B iz
HIEEWEEE | I5E- ZR5ohE ElIE24
JavafZFixit ZiohE tanall] M
JavatgFixit ZRShE B IR
JavafgFixit ZohE oohE I3

RERIR | #hits | #UHERER
Webf FAEL VFED Ciidd
FREMSEE | B5H HX
JavafEFiRit | FSkE ElE

Join

grade temporaryl

FHEFS TR | PR iRERR | BUHtRE | #HERER

200701 | WebiAHER | 86 Web FIEH] YFED b

200702 | #UEEWSHEEL | 88 HEEHESEE | 2 %

200703 | WebpAEM | 95 JavafgFigit | Z=5cbE ElE

200704 | WebnAEM | 76 ﬁl grade join temporaryl on

200705 | HiEEHRSEE | 90 grade.iBfER&fR=temporaryl.ifiE2R

200706 | JavafEFriit | 68 FEFE | FEEWR | BE& | #ndE | #UPERER

200707 | Javaf2Figit | 45 200701 | WebpFEERM | 86)])

200708 | WebpFBEM | 82 200702 | BUESHHSHIE | 88 G| %

200709 | Javaf2Figit | 85 200703 | WebRmFEERM | 95 RN b
200704 | WebMAERM | 76 YFan Him
200705 | HUEGEHSEIE | 90 G| Iz
200706 | JavafzFizit | 68 Z5ThE eSS
200707 | JavafZRFikit | 45 Z5ThE ElEes5)
200708 | WebR/AER | 82 ¥Fan i
200709 | JavafEFixit | 85 ZohE e

Join

student temporary?2
FEZES | REHE | | REFES | RERR | ks | #Unds | #UHERER
200701 B 200701 | WebRFEAY | 86 YFED Him
200702 ZhEE 200702 | #EEWSHEE | 88 15 BT
ﬂ' student join temporary2 on
student.Z2EES=temporary2 . ZE£ZS
FEZS | FHEHEE | RESBWR | G | #UktE | #UHERER
200701 Hi WebiFBERt | 86 VFED i
200702 el MRS ESEA | 88 15 %
200703 i WebiBER | 95 ¥FEN i
200704 Xlg& WebM FEER | 76 FaEn i
200705 EE= | #BUEEMSEE| 90 BI5H# i
200706 x3 Javaf2Figit | 68 ZohE e
200707 5K K Javaf2FigZit | 45 Z5ohE EIE2 e
200708 FIMY WebiFBEAL | 82 YFEN i
200709 3k JavafgFFigit | 85 Z5ohE EIE2 e

Brute-force

P(n): denote the number of alternative parenthesizations
of a sequence of N matrices.

We obtain the recurrence
1 ifn=1,

P(n) =+ EP(k)P(n—k) ifn=2.

This recurrence is the sequence of Catalan numbers,
which grows as Q(4" / n*’2).

It Is Infeasible!

Structure of an optimal parenthesization

O Any parenthesization of the product A;...A; must split the
product between A, and A, ., for some integer k in the range
| < k <]. For some k, we first compute the matrices A,...A, and
Ay:1---Aj and then multiply them together to produce the final
product A;...A;.

O Suppose that an optimal parenthesization of A;...A; splits the
product between A, and A, . Then the parenthesization of the
"prefix” subchain A,...A, within this optimal parenthesization
of A;...A; must be an optimal parenthesization of A;...A,.

O We can build an optimal solution to an instance of the matrix-
chain multiplication problem by splitting the problem into two
subproblems, finding optimal solutions to subproblem, and
then combining these optimal subproblem solutions.

Recursive solution

m[1,J] denote the minimum number of scalar

multiplications needed to compute the matrix
AI oo .Aj.

We obtain the recursive equations

I<k<j

N 0 if i =j,
mlL)] = min{m[1l,K]+m[K+1, j]]+ p,, P P;} if 1 <].

Our goal is m[1,n].

Recursion tree

2.2G@DC9@D C.DEDEIED C.DEDCIE.-D

D BB (2.2G9WDE.2

Recursion tree

2.2@DCV@D €.DEDEIED CL.DEDCIE-D

D BB (2.2G9WDE.2

Overlapping subproblems

Recursion tree

E2GHEIED C.DEDEIED C.DEDCIE.-D

C.DEDEDE.3 DD

Overlapping subproblems

Computing the optimal costs

Matrix Dimension

A, 30x35

A, 35x15

A, 15x5

A, 5 x10

A, 10x%20 m
A, 20 %25 6 1

Computing the optimal costs

Matrix Dimension

A, 30x35
35 % 15
15 % 5
5 %10
10 x 20
. 2025

V) B N VS I\

A
A
A
A
A

Computing the optimal costs

Matrix Dimension

A, 30x35
35 % 15
15 % 5
5 %10
10 x 20
. 2025

V) B N VS I\

A
A
A
A
A

=0+0+30%x35x%x15
= 15,750

Computing the optimal costs

Matrix Dimension

A

2

whn Bk~ W

A
A
A
A
A

6

30 % 35
35 %15
15%5
5 x10
10 x 20
20 x 25

. {m[l,l] +m2,3]+ Py Py oP;

m[laz] + m[39 3] + pO. pz' p3

[0 +2,625 +30 X 35 x 5
| 15,750+ 0 +30 % 15 % 5

(7,875

= 17,875

| 18,000

Computing the

optimal costs

Matrix Dimension

A

2

whn Bk~ W

A
A
A
A
A

6

30 x 35
35 %15
15 %5
5 x10
10 x 20

m[2.2] + M[3, 5]+ p, - P, Py
m[2,3] + m[4, 5] +p, - p; - Ps
| m[2.4] + m[S, 5]+ p, - PPy
(0 +2,500+ 30 % 15 %20
2,625 +1,00 0+ 30 x5 x 20
4,375 +0+35x%x10 %20
(13,000

7,125 =7,125.

L 11,375

Computing the optimal costs

Matrix Dimension

A, 30 x35
35 % 15
15%5
5 %10
10 x 20 m
. 20x25

N B~ W N

A
A
A
A
A

Constructing an optimal solution

Matrix Dimension

A, 30x35

A, 35x15

A, 15x5

A, 5 x10

A; 10 %20 m
As 20x25 ¢

m[1,6] = 15,125
Ar.. A) = ((A... A)(A,... A))

Constructing an optimal solution

Matrix Dimension

A, 30x35

A, 35x15

A, 15x%5

A, 5 x10

A, 10%20 m
As 20x25 ¢

m[1,6] = 15,125
(A Ay = (A ADAL AY))
= (A1 (A AD)(Ay-.. Ag))

Constructing an optimal solution

Matrix Dimension

A, 30x35

A, 35x15

A, 15x5

A, 5 x10

A; 10 %20 m
As 20x25 ¢

m[1,6] = 15,125

A A) = ((A... A)(A,... Ay))
=((A(A, A)D)A,. A))
= ((A1(A; AD)(AA)AG))

Flements of dynamic programming

Optimal substructure

* Dynamic programming builds an optimal solution to the
problem from optimal solutions to subproblems.

* The solutions to the subproblems used within the optimal
solution to the problem must themselves be optimal by using
a "cut-and-paste" technique.

e Subproblems are independent.

Overlapping subproblems

* Recursive algorithm revisits the same problem over and over
again.

* In contrast, a problem for which a divide-and-conquer approach
1s suitable usually generates brand-new problems at each step
of the recursion.

Divide-and-conquer algorithm

IDEA:
N x N matrix = 2 *x 2 matrix of (n/2) % (n/2) submatrices:

HAEBHIFS

r=ae+bg) .
Frecursive
s = af + bh > 8£nults of (n/2) % (n/2) submatrices

t=ce+dg | 4addsof(n/2) x (n/2) submatrices
u=cf+dh |

Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v

consisting the fewest edges.

* Unweighted longest simple path: Find a path from

U to v consisting the most edges.

P4

O

P Ps

Pg

Ps

()

P71 |Ps

&)

©

P

Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v

consisting the fewest edges.

* Unweighted longest simple path: Find a path from

U to v consisting the most edges.

P4
Shortest path from u to v. m (\D
uPigPay, P
For intermediate vertex s. Pif | Ps P7[| Ps
P

p, and p, must be shortest path. C\f
S

©

P

Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v
consisting the fewest edges.

* Unweighted longest simple path: Find a path from
U to v consisting the most edges.

Longest path from u to v. m (\D
~—%
Ps

uPspPry
For intermediate vertex v. Pif | Ps P7[| Ps
Is p, longest simple path form u

p6 }/-\
tor? (s ﬁ\")

P

Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v
consisting the fewest edges.

* Unweighted longest simple path: Find a path from
U to v consisting the most edges.

Longest path from u to v. m (\D
~—%
Ps

uPspPry
For intermediate vertex v. Pif | Ps P7[| Ps
Is p, longest simple path form u

p6 }/-\
tor? (s ﬁ\")

No.ltisuplsp2v&r P,

Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v
consisting the fewest edges.

* Unweighted longest simple path: Find a path from
U to v consisting the most edges.

Longest path from u to v. m (\D
~—%
Ps

uPsrPay.
For intermediate vertex v. Pif | Ps P7l |Ps
Is p, longest simple path form r

p6 }/-\
tov? (87 Ll>

P

Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v
consisting the fewest edges.

* Unweighted longest simple path: Find a path from
U to v consisting the most edges.

Longest path from u to v. m (\D
~—%
Ps

uPsrPay.
For intermediate vertex v. Pif | Ps P7l |Ps
Is p, longest simple path form r

p6 }/-\
tov? (87 Ll>

No. Itisr P4y Pig P2y P>

Subtleties

Given a directed graph G = (V, E) and vertices U, vV € V.
e Unweighted shortest path: Find a path from u to v
consisting the fewest edges.

* Unweighted longest simple path: Find a path from
U to v consisting the most edges.

Longest path from u to v. m (\D
~—%
Ps

uPerPiy
For intermediate vertex v. Pif | Ps P71 P
Combine the longest simple paths Ps L
WPrsPay PopPe b By (ST (V)

: : : P
The path contains cycles and is not simple. ’

Independent

O Subproblems in finding the longest simple path are
not Independent, whereas for shortest paths they are.

O Subproblems being independent means that the
solution to one subproblem does not affect the
solution to another subproblem.

O For longest simple path problem, we choose the first
path U - s — v — 1, and so we have also used the
vertices S and . We can no longer use these vertices
in the second subproblem.

O Our use of resources in solving one subproblem has
rendered them unavailable for the other subproblem.

Four steps of development

* Characterize the structure of an optimal solution.

e Recursively define the value of an optimal solution.

* Compute the value of an optimal solution in a
bottom-up fashion.

* Construct an optimal solution from computed
information.

Longest Common Subsequence

Given two sequences X[1 ... m]and y[I ... n], find a
longest subsequence common to them both.

xx A B C B D A B

P N . BCBA = LCS(X, y)

v B D C A B A

Brute-torce LLCS algorithm

Check every subsequence of x[1 ... m] to see 1f 1t 1s
also a subsequence of y[1 ... n].

Analysis
* Checking = O(n) time per subsequence.
* 2M subsequences of X (each bit-vector of length m
determines a distinct subsequence of X).
* Worst-case running time = O(n2M)
= exponential time.

It Is Infeasible!

Optimal substructure of an LLCS

Given a sequence W = <w,, W,, ..., W >, define the ith

prefix of W, for1=0, 1, ..., m,as W, =<w,, w,, ..., W>

Let X= <X, Xy, ..., Xand Y =<y, Y,, ..., y,> be

sequences, and let Z =<z, z,, ..., z,> be any LCS of X
and Y.

o Ifx,=Vy,thenz, =x_ =y, and Z,_, 1s an LCS of
Xoand Y .

e Ifx,# V., thenz, # X and Zisan LCS of X _, and Y.
° Ifx, # V., thenz, # vy, and Zisan LCS of Xand Y, _,.

Recursive solution

Let us define c[l, || to be the length of an LCS of the
sequences X; and Y.

The optimal substructure of the LCS problem gives the
recursive formula.

r

0 if 1 =0 or | =0,
cli,jj=<cli—1,]—1]+1 if I,] > 0 and x; =,
max(c[l, j — 1], c[i = 1, j]) if I,] > 0 and X; 7 ;.
1 2 i m
X:
1 2 — J n
Y:

Our goal is c[m, n]

T X < m oo A<M

Oiem O <« N OO < O O I~

Computing LLCS

o M
) ¥ <
Q| 20O
L 2D
2 -
p " —
&
O
O
]

@)

o

@

@

@)

@)

@)

@)

@)

X < m oo A<M

Oiem O <« N OO < O O I~

Computing LLCS

~ o O A W N R O —O
o > O WO W >

J

2}

0
Yi

1 2 3 4 5 6
B DCABA

O

0

O

0]

O

Oo—>»10

X, # Y, and
c[0, 1] = c[1, 0] then
cl1, 1]=¢[0, 1]

-J

Computing LLCS

c[0, 3]+ 1

-
O
=
— |l
<t r—
> <t
[I—
— 0 —
X O
o
o
o —
OO
OO
OO
@) o @) o @) @) @) o

X < m O AO<Cm

Oiem O <« N OO < O O I~

Computing LLCS

~ o O A W N R O —O
o > O WO W >

J

2}

0
Yi

1 2 3 4 5 6
B DCABA

O

O

0)
)
0)

)
1
0)

)
1
)

N

1

X, 7 Y5 then
c[0, 5] < c[1, 4] then
c[l,5]=c[l, 4]

e
QO
<
=
R
7 o\
o — L
s © O
Nl
> 5
L
X O (&)
(@) - N &\ M j&e—mMm < [e—<t
o x| ¥ | e
Lo o - N je—Q M jEe—Mle—M <t
AN :M V /
4A o i i Nfjfe—N QN M j&e—M
™ C OO = Nje—\}e—\ je—\ |
- I
OO | | €& —|}€&—— N je—N}<—N
ol ©F \ 4
— B Ol«0O — |€— ~ | €&——}€&—] —
= I / /
) o = ol o] ol o ol ol o] o
—
mlj S <M OmAO<m
O Qi=mm O — on <t LO O D~
I I

<
O
1m o)
I
s
o X
~)
=~ O
O
o 4] Nle—n] o=l Sl
| TS Y Vv
C oM o H_ Nl—A| Ol=—ol—n| <
4 e
L < < o 1_M1 H_AIZAIZ mle—m
4 Y
nﬁa » O Ole—o H_ Nf—Nf—Nf—nj—~
4
Ol—0O| Hle—dle—d] Nf—Nj—«
2| ~a Y
.U — B OAIO\lAIl\lAIlAIl\l
rup o = ol ©| o ol ol ol o o
—
)
mu _ <M OmM O <CMm
O Qim O «H N M <t O O I~
@,

Any question?

Xiaoqing Zheng
Fundan University

