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Problem 1 (Fundamentals of curvilinear coordinates)

1. To proof the following identity

∇× (∇×Φ)∗ = ∇⊗ (Φ · ∇) + (∇ ·Φ)⊗∇−ΔΦ−∇⊗ (∇(trΦ))

− I[∇ ·Φ · ∇−Δ(trΦ)]

for any symmetric affine tensor Φ = Φ∗ ∈ T 2(R3) through field analysis with respect to

general curvilinear coordinates.

2. To consider a tensor represented in two point forms

Φ = Φi·B·
·A·j(ξ, x)gi(x)⊗GA(ξ)⊗GB(ξ)⊗ gj(x)

where {gi(x)}mi=1 are covariant basis with respect to the curvilinear coordinates X(x) ∈
C p(Dx,X(Dx)) and {GA(x)}mA=1 to X(ξ) ∈ C p(Dξ ,X(Dξ)) accompanying with the rela-

tions x = x(ξ) ∈ C p(Dξ ,Dx). To deduce the representation of ∂
∂xlΦ(x) through covariant

differentiations with respect to different curvilinear coordinates.
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3. The so-called transfer tensor is defined as

I = giA(ξ, x)gi(x)⊗GA(ξ), giA := (gi,GA)Rm

To prove one of the relations

∂

∂ξL
I(ξ) = 0,

∂

∂xl
I(x) = 0

Problem 2 (Stain tensor on an arbitrary deformable surface) Based on the intrinsic de-

composition with respect to any direction

Φ =

⎧⎨
⎩

e⊗ (e,Φ)R3 − [e, [e,Φ]]

(Φ,e)R3 ⊗ e− [[Φ,e],e]
∀ |e|R3 = 1, ∀Φ ∈ T p(R3)

the following representation of the strain tensor on an arbitrary deformable surface can be de-

duced

D � 1

2
(V ⊗∇+∇⊗ V )

=

(
θ −

Σ∇ · V
)
n⊗ n+

1

2
[(ω +W )× n]⊗ n+

1

2
n⊗ [(ω +W )× n] +

Σ
D

where
Σ
D �

(
V ⊗

Σ∇+
Σ∇⊗ V

)
/2 is the strain of the boundary, W := −

(
Σ
∇V 3 + V ·K

)
×n

is purely determined by the boundary, and θ := ∇ · V is the dilation.

1. To give the relation between the full dimensional gradient operator ∇ � iα
∂

∂Xα and the

surface gradient operator
Σ∇ � gl ∂

∂xl
Σ

. The reason should be indicated.

2. To proof the following identity

V ⊗∇ =

(
θ −

Σ∇ · V
)
n⊗ n+ (ω × n)⊗ n+ (W × n)⊗ n− [[V ⊗∇,n],n]

3. To fulfill the deduction.

4. To give the component matrix of D on a sphere which does the radical oscillation with

fixed amplitude and frequency.

Problem 3 (Some studies based on the intrinsic Stokes formulas) We have attained the

Stokes formula of the following forms

∮
C
τ ◦ −Φ dl =

∫
Σ

(
n×

Σ
∇
)
◦ −Φ dσ

∮
C
(τ × n) ◦ −Φ dl =

∫
Σ

(
Σ∇ ◦ −Φ+Hn ◦ −Φ

)
dσ

which are termed as the intrinsic Stokes formulas.
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1. On any deformable smooth surface, the following identity is keeping valid

(
n×

Σ
∇
)
· (n ×Φ) =

Σ
∇ ·Φ+Hn ·Φ, ∀Φ ∈ T p(R3)

To prove the identity as mentioned above by the intrinsic Stokes formula of the second

kind.

2. To deduce the differential equation of mass conservation for the two dimensional compress-

ible steady flow on an arbitrary fixed smooth surface.

3. To give the differential equation of mass conservation in detail for the two dimensional

compressible steady flow on a fixed sphere.

Problem 4 (Governing equations in Lagrangian variables) The governing equations of

continuum media represented in Lagrangian arguments could be listed as follows

mass conservation ρ(ξ, t) |F|(ξ, t) = ◦
ρ(ξ), F � ∂xi

∂ξA
(ξ, t)gi(x, t)⊗GA(ξ)

momentum conservation
◦
ρ(ξ)a(ξ, t) =

◦
ρ(ξ) fm(ξ, t) +

⎧⎨
⎩

[t · (|F|F−∗)] · ◦
� =: τ · ◦

�

(F ·T) · ◦
�, T = F−1 · τ

constitution relation T = −p
◦
C

−1

+ 2

[
∂Σ

∂I1
I+

∂Σ

∂I2
(I1 I−

◦
C

−1

)

]
,

◦
C := F∗ · F

where the constitution relation is corresponding to the incompressible flow.

The procedure to study the finite bending deflection of cube can be divided into following

steps.

1. Configurations and curvilinear coordinates The curvilinear coordinates with respect

to the initial physical configuration can be just Cartesian coordinates, namely

ξ =

⎡
⎢⎢⎢⎣

◦
X
◦
Y
◦
Z

⎤
⎥⎥⎥⎦ �→

◦
X(ξ) =

⎡
⎢⎢⎢⎣

◦
X
◦
Y
◦
Z

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

◦
X
◦
Y
◦
Z

⎤
⎥⎥⎥⎦

The curvilinear coordinates with respect to the current physical configuration is familiar

cylindrical coordinates, namely

x =

⎡
⎢⎢⎢⎣

r

θ

z

⎤
⎥⎥⎥⎦ �→ X(x) =

⎡
⎢⎢⎢⎣

x

y

z

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

r cos θ

r sin θ

z

⎤
⎥⎥⎥⎦
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2. Assumption of deformation One can assume the deformation in the following form

ξ =

⎡
⎢⎢⎢⎣

◦
X
◦
Y
◦
Z

⎤
⎥⎥⎥⎦ �→ x(ξ) =

⎡
⎢⎢⎢⎣

r

θ

φ

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

r(
◦
X)

θ(
◦
Y )

z(
◦
Z)

⎤
⎥⎥⎥⎦

3. Deformation gradient tensor To calculate the component matrix of deformation gra-

dient tensor F with respect to the anholonomic orthonormal bases.

4. Strain tensor To calculate the component matrices of strain tensor
◦
C with respect to the

anholonomic orthonormal bases. Subsequently, its principle invariants can be determined

readily.

5. Piola-Kirchhoff stress tensor To calculate the component matrices of Piola-Kirchhoff

stress tensor of the second kind with respect to the anholonomic orthonormal bases.

6. Momentum Equation To calculate the component equations of the momentum conser-

vation.

The questions are

1. To deduce the component matrix of deformation gradient tensor F with respect to the

anholonomic orthonormal bases.

2. To deduce the component matrix of strain tensor
◦
C with respect to the anholonomic or-

thonormal bases.

3. To deduce the representations of the principle invariants of
◦
C.

4. To deduce the component matrix of Piola-Kirchhoff stress tensor of the second kind T with

respect to the anholonomic orthonormal bases.

5. To deduce all of the component equations of the momentum conservations with respect to

the anholonomic orthonormal bases.

6. To show that there exists the relation p = p(
◦
X), in other words one has ∂p

∂
◦
Y

= ∂p

∂
◦
Z
= 0

Note: To give the deduction and calculation in detail. And as the score is considered, the

reflection of the correct methodologies is oriented.
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