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This case study presents an attempt to solve a very challenging problem of elucidating the pharmacophore patterns of drugs that bind to P-glycoprotein (P-gp). 

Such an understanding will enable scientists to identify potential P-gp substrates early in the drug discovery process since multidrug resistance can be prevented by developing P-gp inhibitors or developing drugs that can circumvent efflux by P-gp. 

P-glycoprotein (P-gp) is a member of ATP Binding Cassette (ABC) protein family. ABC belongs to a bigger class of proteins called multidrug transporters, which also include major-facilitator (MRF), small-multidrug-resistance (SMR), resistance-nodulation (RND) and multidrug-and-toxic-extrusion (MATE) protein families. Multidrug transporters are present in almost every cell and protect the cell from toxic natural products through active secretion. ABC is powered by ATP hydrolysis energy; the other four families are powered by proton motive force. P-gp is a 170 kDa membrane protein and has two homologous halves. Each half of P-gp contains six transmembrane a-helices and a nucleotide binding domain (NBD). P-gp is distinctive among multidrug transporters in that it can recognize and transport a wide variety of structurally diverse compounds (1). 

Many mechanisms have been proposed for P-gp mediated drug efflux (2). The flippase model of drug transportation is increasingly gaining acceptance. According to this model, drugs partition between the cell membrane and the aqueous phases. There is equilibrium among drug molecules in the aqueous extracellular and cytosolic phases and the inner and outer leaflets of the lipid bilayer. A drug molecule intercalated in the inner leaflet can access P-gp. P-gp will flip the drug molecule to the outer leaflet or, alternatively, directly move the molecule to the aqueous extracellular space through a center pore. According to the flippase model, P-gp substrates and inhibitors interact with P-gp in exactly the same way. However, the inhibitors can flop back from outer leaflet to inner leaflet very rapidly to keep P-gp operating in futile cycles. It is experimentally observed that many P-gp inhibitors cause big increase in its ATPase activity.

P-gp plays important roles to alter the ADME/PK properties of its substrates. High level of P-gp is found on the apical surface of intestinal mucosal cells, and this can lead to low oral bioavailability of P-gp substrates due to incomplete absorption. The presence of P-gp in the brain microvascular endothelia can prevent certain CNS drugs from penetrating cross the blood brain barrier. Many chemotherapeutic drugs induce the up-regulation and over expression of P-gp in the tumor cells, thus rendering these cells resistant to a broad spectrum of agents. Multidrug resistance (MDR) is therefore a major obstacle in the chemotherapeutic treatment of most cancers. Because of these and other issues, the pharmaceutical industry finds it beneficial to identify compounds that could interact with P-gp at the early stage of a drug discovery program. Both in vitro biological screenings and in silico models are useful in identifying these compounds (3). 

Pharmacophore modeling is a useful technology to predict the P-gp substrate liability of a compound. Pharmacophore modeling assumes that a set of structural features in molecule is recognized at a receptor site and is responsible for the molecule's biological activity. Experiment evidence indicates that P-gp makes direct interactions with drugs. P-gp has well defined binding pockets and display polyselectivity for its substrates (4). Therefore, it is possible to develop pharmacophore models for drugs that bind to p-gp. In practice, difficulties have been encountered when developing the pharmacophore models: (1) There is controversy about the precise number and nature of P-gp drug binding sites (2). Two non-identical binding sites have been proposed based on radioactive ligand labeling experiments. However, it is not clear whether these binding sites are mutually exclusive in term of drug selectivity, or they are accessible sequentially by the same drug molecule while being transported across the membrane; (2) The broad spectrum of P-gp substrates indicates that its drug binding site is flexible; (3) Drugs interact with P-gp in many different roles. Drugs can be P-gp substrates, non-substrates and MDR inducers, which is not even directly interact with P-gp; (4) Data are coming from many different sources, thus making it difficult to directly compare them. 

Pharmacophore Modeling for Drugs That Bind to P-gp

Penzotti et al. recently reported a computational ensemble pharmacophore model to identify P-gp substrates (5). A collection of 195 compounds was gathered from different sources. These compounds were classified as P-gp substrates and non-substrates. The substrates include P-gp substrates, MDR-inducers and some P-gp inhibitors, and the non-substrates include non-substrates and also some P-gp inhibitors. The Penzotti data set includes most known P-gp substrates and non-substrates, and the individual pharmacophore in the ensemble may capture a binding mode that is responsible for interacting with one of the multiple binding sites. The binary classification scheme, while being able to reduce the intrinsic error of this large data set to some extent, causes information loss and makes it hard to determine the relevance of the pharmacophores in the ensemble. 

A data set of compounds targeting a specific binding site has been recently reported by Döppenschmitt et al. The IC50 was determined by radioligand-binding assay in which [3H]-verapamil was displaced by other drugs in a concentration-dependent fashion (6). Based on this data set, Pajeva and Wiese developed a model for drugs that bind to the verapamil binding site on the P-gp (7). The model was developed with the software GASP. Two of the most rigid members of this set, vinblastine and rhodamine 123, were selected as the templates and a common feature pharmacophore model was generated by aligning the rest of the molecules with the templates.

Catalyst is an integrated platform for pharmacophore modeling. In Catalyst conformations are generated using the poling algorithm that ensures broad coverage of conformational space. Catalyst HypoGen generates predictive 3D hypotheses that explain the trends of activity within the training set. The Döppenschmitt data set represents an excellent training set for Catalyst HypoGen modeling. This data set was determined from a single source under the same experiment settings and compounds in this data set have a good chance of interacting with the same binding site on P-gp. The Döppenschmitt data set contains sixteen molecules, and HypoGen requires a minimum number of sixteen compounds to have a statistical significance to the resulting model and reduce chance correlation. The compounds in this set cover many therapeutic areas, and they differ substantially in molecular weight, size, rigidity, functional groups, etc. This reflects the broad substrate selectivity of P-gp. The IC50 values for drugs of this set span 4.4 log units, and Catalyst requires greater than 4 log units. The molecules are approximately evenly distributed among each order of magnitude. The stereochemistry does not affect IC50 values. Affinities for three pairs of stereoisomers for drugs in this set were reported. However, the binding affinity of the S- and R- isomers in each pair are identical within experimental error. It is reasonable to assume that P-gp does not distinguish stereoisomers because the binding pockets are flexible. In Catalyst, both S- and R- configurations will be considered for a chiral center if the stereochemistry is not specified.

Conformational model for each molecule was generated using the best algorithm with maximum number of conformers set to 255. The energy range of the calculated potential energy minimum was set to be 20 kcal/mol. The average number of conformers is 100. The most rigid members (e.g. tranylcypromine, rhodamin 123, vinblastine) has significantly less number of conformers, while the most flexible members (e.g. verapamil, pindolol) almost reach the maximum conformer numbers. 

In generating the hypothesis, chemical features were selected from the feature dictionary to include hydrogen bond acceptor, hydrogen bond donor, aliphatic hydrophobe, aromatic hydrophobe and positive ionizable feature. HypoGen modeling was run with all the parameters set to the default values. HypoGen returns a log file that contains important parameters indicating whether the run is successful. These include the null cost, fixed cost and configuration cost. Shown below for this run, a null cost is 107.85 bits, a fixed cost of 63.55 bits, and a configuration cost of 8.61. Both fixed cost and null cost are theoretic estimates. Fixed cost is the cost of a perfect hypothesis, the predicted activity exactly matches the experimentally determined activity and the slope for the regression curve is 1. The null cost is the cost of a hypothesis that gives no correlation between the predicted activity and the experiment activity. The regression curve is a horizontal line with a value of the mean experiment activity. Fixed cost and null cost represent the upper and the lower bound, respectively. Difference between the two costs indicates the statistical significance of the run. The current value of 44 bits is within the appropriate range. Configuration cost describes the complexity of the hypotheses space. Any value below 17 is acceptable. The present value of 8.61 indicates there were 390 initial hypotheses for optimization. 

The top 10 hypotheses are summarized in the Table 1. The total cost of the ten returned hypotheses ranges from 70 to 79 bits; they are closer to the fixed cost at 63 bits. Ideally, the cost for all returned hypothesis should be closer to the fixed cost than the null cost. This is indeed the case. The dcost is the difference between the cost of each hypothesis and the null cost. The normalized RMS deviation is between the log estimated activity and the log experimental activity. The correlation coefficient is of the simple linear regression between the estimated activity and experimental activity. The RMS and correlation coefficients indicates the quality of 'prediction' for the training set. All of the top ten hypotheses contain one aliphatic hydrophobe and two aromatic hydrophobes. Eight of them contain two hydrogen bond acceptors and two of them contain one hydrogen bond acceptor and one hydrogen bond donor.
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Table 1 Summary of the top 10 hypothesis returned by HypoGen modeling
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Table 1 Summary of the top 10 hypothesis returned by HypoGen modeling

The top ten hypotheses are clustered and the representative hypotheses from each cluster are shown in Figure 1. For clarity, all the models are mapped onto rhodamine 123. These models are similar. The first and third differs in the relative orientation of the hydrogen bond acceptor and the aliphatic hydrophobe. In one case they point backward and in another case they point outward. This is due to the free rotation of biaryl carbon-carbon bond. The major difference between the second and fourth models is the location of the hydrogen bond acceptor feature. Comparing the third and the fourth models shows that either a hydrogen bond acceptor or a hydrogen bond donor can map to the same amino group. In their paper, Pajeva and Wiese very insightfully pointed out that the HBD feature can double as an HBA feature if the protonation state of the functional group bearing that feature changes. The current observation is very similar to their results. 
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Compound 1C50 (mM) Est. IC50 (mM)
Rhodamine 123 0.5 041

Verapamil 15 £

Haloperidol 55 1

Ketaconazale 13 32

Vinblastine 34 120

Vincristine £ 240

Quinidine 340 130

Propranolol 350 1100

Quinine 430 180

Celiprolol 730 210

Talinolal 830 az0

Daxarubicin 990 10

Metroprolol 1300 330

Pindalal 1950 2200

Cimetidine 6500 2200 29
Tranyleypromine 14000 52000 437

Table 2 Experiment and estimate ICS0 values for drugs in the Déppenschmitt
data set
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whether this moleculs is actually used will depend on the setting of other
parameters, such as Misses and CompleteMisses. Misses let user specify the
number of molecules that do not have to map to all features in the hypothesis
CompleteMisses specify the number of molecules that do not have to map to
any features in the hypothesis. The Misses and CompleteMisses were set to 3
and 2, respectively. The value for MaxOmitFeat was st to 2 5o that a
pharmacaphare can be kept even if that specific malecule is a complete miss
to that pharmacophore (Table 3).

Compound  IC50 (mM) Principal MaxOmitFeat
Rhodamine 123 0.5 2

Verapamil 15 1

Norverapamil 4.2

Haloperidol 5.5

Vinblastine

Table 3 Training set and parameter setting for HipHop modeling

The training set cantains four of the mast active melecules plus vinblastine.
The principal parameter for rhodamine 123 and vinblastine wers set to 2 to
match the GASP settings. All molscules in the training set are sllowsd to be
complete misses. The same featurs types were selected as in the HypoGen
run. The mapping of the top scoring hypothesis of HipHop modeling to
rhadamine 123 and verapamil are shawn in Figures 4 and 5, respectively
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Figure 1 Representative hypotheses from HypoGen modeling

Hypothesis no.1 has every feature mapped to the most active compound rhodamine 123, the molecule with the highest affinity to P-gp in this data set. Hypotheses no.1 is also the hypotheses with the lowest error cost, lowest rms deviation and highest correlation coefficient. Figure 2 shows this hypothesis mapped to three representative molecules in the training set. There is a good correlation between the geometric fit score and the estimated activity. Rhodamine 123 is the most active molecule and every feature from the pharmacophore can map to rhodamine 123. One feature is missed for the less active verapamil and vinblastine. This fits into the HypoGen assumption that molecules are less active because either it misses certain features. In each case, the estimated activity is quite close to the observed activity. 

With hypothesis no 1, the estimated IC50 values are very close to the experimental values (Table 2). The IC50 value for 11 out of 16 compounds, they are of the same order of magnitude. The errors are generally low. The correlation coefficient is 0.93 (Figure 3).
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Figure 2 The first hypothesis from HypoGen mapped to rhodamine 123 (left), verapamil (middle), and vinblastine (right)
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Table 2 Experiment and estimate IC50 values for drugs in the Döppenschmitt data set
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Figure 3 Linear regression between the experiment IC50 and estimated IC50

HypoGen generates 3D predictive pharmacophores. However, HipHop is considered to be the counterpart of GASP. HipHop derives a pharmacophore based on common features of active molecules. Unlike GASP, HipHop does not require the selection of a template. Rather each molecule is treated as template in turn. Different configurations of chemical features are identified in the template molecule using a pruned exhaustive search which starts with small sets of features and extends them until no larger configuration is found. Each configuration is then compared with the remaining molecules to identify configurations that are common to all molecules. The resulting pharmacophores are ranked using a combination of how well the molecules in the training set map onto the pharmacophore model and the rarity of the model. In HipHop the user can define how many molecules must map completely or partially to a pharmacophore configuration, thus relaxing the GASP requirement that each feature in the pharmacophore must be present in each of the molecules. 

To directly compare with the GASP result, we have also developed common feature pharmacophore with HipHop. The difference is that in HypoGen, the pharmacophore configuration space was constructed with the two most active molecules in the training set. In HipHop, the user can specify which molecules are going to be used to construct the pharmacophore configuration space. This is through setting the 'principal' compound parameter. This parameter can adopt the values of 0, 1, or 2. A value of 2 means this molecule will be used to build the configuration space. A value of 0 means this molecule will be ignored when building the configuration space. A value of 1 indicates to the program that the molecule can be used to build the configuration space. But whether this molecule is actually used will depend on the setting of other parameters, such as Misses and CompleteMisses. Misses let user specify the number of molecules that do not have to map to all features in the hypothesis. CompleteMisses specify the number of molecules that do not have to map to any features in the hypothesis. The Misses and CompleteMisses were set to 3 and 2, respectively. The value for MaxOmitFeat was set to 2 so that a pharmacophore can be kept even if that specific molecule is a complete miss to that pharmacophore (Table 3).
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Table 3 Training set and parameter setting for HipHop modeling

The training set contains four of the most active molecules plus vinblastine. The principal parameter for rhodamine 123 and vinblastine were set to 2 to match the GASP settings. All molecules in the training set are allowed to be complete misses. The same feature types were selected as in the HypoGen run. The mapping of the top scoring hypothesis of HipHop modeling to rhodamine 123 and verapamil are shown in Figures 4 and 5, respectively.
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Figure 4 Top scoring common feature pharmacophore model generated by HipHop in Catalyst mapped to Rhodamine (0.5 mM): Green: Hydrogen Bond Acceptors; Blue: Hydrophobic points; Cyan: Aromatic Hydrophobe. The relative conformation energy of rhodamine 123 is 2.6 kcal/mol. The fit score is 4.93. 
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Figure 5 Top common feature pharmacophore model generated by HipHop in Catalyst mapped to Verapamil (1.5 mM): The relative conformation energy of verapamil is 12.8 kcal/mol. The fit score is 3.72.

The pharmacophore models from Catalyst and GASP can be compared (Figure 6). The hypotheses are very similar while differ slightly in details like inter-feature distance and orientation of the hydrogen bond vectors. In rhodamine 123, the two aromatic hydrophobes, a hydrogen bond donor and an acceptor are identified in both models. The aliphatic hydrophobe is missing in GASP model because aliphatic hydrophobe is not in the feature dictionary of GASP. In verapamil, two aromatic hydrophobe and a hydrogen bond acceptor are also identified. The nitrogen is very close to the hydrogen bond donor feature in the pharmacophore. As we have seen before, it is possible that this nitrogen can also map to a hydrogen bond acceptor feature. Then it will be more close to the GASP model. There is a hydrogen bond acceptor feature present in the GASP model that is missing in the HypoGen model. This feature was generated by the alignment of vinblastine and rhodamine 123, and is missing in verapamil. Vinblastine much more rigid than verapamil and is yet a much weaker binder. It would be unreasonable if it even possess more pharmacophore features than verapamil. 
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Figure 6 Comparison of the Catalyst and GASP models
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Figure 7 Common features in the Catalyst and GASP models mapped to the same functional groups in some drugs

Two of the Catalyst hypotheses were manually merged and the result was compared with the GASP model. Five out of six features are identical and look very similar in their spatial arrangement.


Figure 8 Comparison of the Catalyst and GASP pharmacophores

Pharmacophore modeling on P-gp substrates is an attempt to answer a challenging question with a novel use of an established technology. Obviously all of the reported hypothesis have at most only captured a small fraction of all the pharmacophore features. It is intriguing to point out that the Döppenschmitt data set, diverse as it appears to be, might actually contain a homologous series of P-gp ligands. HypoGen modeling on a data set reported by Sharom, which includes small molecule drugs, peptides and detergents failed to yield statistically significant results. Development of more accurate model will depend on new data. New efforts to add physicochemical property filters and shape-based pharmacophore models to the current models are continuing. 
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