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Problem 1 (The Application of the Diffeomorphism) The concept of diffeomorphism with

its related results play the essential role to recognize the so-called differential manifolds.

1. To narrate the content of rank theorem.

2. To narrate the definition of differential manifolds.

3. To proof the following proposition. If a chart ϕ : Ik → U ⊂ S belongs to class C(1)(Ik,Rn)

and has maximal rank at each point of the cube Ik,there exists a number ε > 0 and a

diffeomorphism ϕε : In
ε → Rn of the cube In

ε := {t ∈ Rn||ti| ≤ εi, i = 1, · · · , n} of

dimension n in Rn such that ϕ|Ik∩In
ε

= ϕε|Ik∩In
ε
.

4. To prove that the unite sphere in R3 is the differential manifold.

Problem 2 (Tangent and cotangent mapping) Let φ be the differential mapping between

the differential manifolds M and N with dimM = m and dimN = n respectively. Its corre-

sponding tangent mapping is defined as follows

(φ∗ω)i1,··· ,ir(x) ,
[
∂yα1

∂xi1
· · · ∂yαr

∂xir

]
(x)ωα1,··· ,αr(y(x))
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1. To prove that

{(φ∗ω)i1,··· ,ir(x)} ∈ ∧r(M)

2. To prove the general identity

(φ∗ω)(x) ≡ φ∗(y(x))ω(y(x)) = φ∗(y(x))
[

1
r!

ωα1,··· ,αr(y(x))dyα1 ∧ · · · ∧ dyαr

]

=
1
r!

∑

1≤i1<···<ir≤m

ωα1,··· ,αr(y(x))
[
∂(yα1 · · · yαr)
∂(xi1 · · ·xir)

(x)
]

dxi1 ∧ · · · ∧ dxir ∈ ∧r(M)

for any ω(y) = 1
r!ωα1,··· ,αr(y)dyα1 ∧ · · · ∧ dyαr ∈ ∧r(N)

3. To prove the general identity

φ∗(dω) = d(φ∗ω), ∀ω ∈ ∧r(N)

4. To consider the following particular differential mapping

φ(x) : R4 ⊃ Dx 3 x =




x1

x2

x3

x4



7→ φ(x) =




y1

y2

y3

y4




(x) ,




C1x
1

x1x2x3x4

C3x
3

C4x
4



∈ R4

where C1, C3 and C4 are constants. To calculate

(φ∗ω)(x), ω(y) = f(y2)dy1 ∧ dy3 ∧ dy4 ∈ ∧3(R4)

5. To calculate d(φ∗ω)(x)

6. To calculate (φ∗dω)(x)

Problem 3 (Integral on Differential Manifold) The fundamentals of integral on differen-

tial manifold could be concluded as follows.

1. The integral of one p-form on the differential manifold with dimension p is defined as

follows: ∫

φ(Ip)⊂M
ωp ,

∫

Ip

φ∗ωp, ωp ∈ ∧p(M)

where φ(x) ∈ C (Ip, φ(Ip)) is any chart. To prove that it is well-definition, that is the value

of the integral is independent on the choose of the charts.
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2. The tours in R3 could be represented as

Σ(θ, φ) : Dθφ 3

 θ

φ


 7→ Σ(θ, φ) =




X1

X2

X3


 (θ, φ) ,




(R + r cos θ) · cos φ

(R + r cos θ) · sinφ

R + r sin θ




where θ ∈ [0, 2π] and φ ∈ [0, 2π]. To calculate the integral
∫

Σ
dX1 ∧ dX3

3. To calculate the surface area of the torus through the following definition

|Σ| ,
∫

Dθφ

√
g dθ ∧ dφ, g , det[gij ]

where {gij} is the measure on the torus.

Problem 4 (Stokes Formula) The fundamentals of Stokes formula on differential manifold

could be concluded as follows.

1. To prove the following relation of integral
∫

Ip−1

ωp−1 = (−1)p

∫

H+
p

dωp−1

where

ωp−1 =
p∑

i=1

fi(x)dx1 ∧ · · · ∧ d
◦
x

i ∧ · · · ∧ dxp

such that suppfi(x1, · · · , xp−1, 0) ⊂ Ip−1 and fi(x1, · · · , xp−1, 1) = 0 for all 1 ≤ i ≤ p− 1.

2. The general form of the Stokes formula is
∫

∂M
ωp−1 = (−1)p

∫

M
dωp−1, ωp−1 ∈ ∧p−1(M)

where dimM = p. To calculate the following integral through Stokes formula
∮

Σ
X2dX1 ∧ dX3 + X1dX3 ∧ dX2

where Σ is the torus in R3

Problem 5 (Field Analysis on the Surface–Case Study) To consider the so-called Helical-

Surface

Σ(u, v) : R2 ⊃ Duv 3

 u

v


 7→ Σ(u, v) =




X1

X2

X3


 (u, v) ,




u cos v

u sin v

hv


 ∈ R

3
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1. To give the measure, i.e.the first form, on the surface that could be represented by the

matrix [gij ] ∈ R2×2

2. To give the second form on the surface that could be represented by the matrix [bij ] ∈ R2×2

3. To calculate the Gauss and Mean curvatures denoted by KG and H respectively.

4. To give the connection on the surface that is compatible to the given measure.

5. To determine the parallel-moving vector field following the trajectory

γ(v) : [0, 2π] 3 v 7→ γ(v) =




X1

X2

X3


 (v) ,




a cos v

a sin v

hv


 ∈ Σ

6. To calculate the Riemann-Christoffel tensor Rijpq on the surface through the Gauss equa-

tion, namely,

Rijkl = bikbjl − bjkbil

7. To prove the following identity

Rijkl = KG(gikgjl − gjkgil)

that is just valid for 2 dimensional differential surface in R3.

Problem 6 (Field Analysis on the Surface–General Study) To consider the general n−
1 dimensional differential surface in Rn

1. To deduce the so-called Gauss & Codazzi equations for

Rijkl = bikbjl − bjkbil

∇pbqj =∇qbpj

2. To deduce the so-called Ricci identity

∇p∇qΦi
·j −∇p∇qΦi

·j = Ri
spqΦ

s
·j −Rs

jpqΦ
i
·s

Generally, this identity could be extended to the tensor with any order.

Note: To give the deduction and calculation in detail. And as the score is considered, the

reflection of the correct methodologies is oriented.
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