复旦大学力学与工程科学系

2011 ～ 2012 学年第一学期期末考试试卷

$\square A$
A 卷
$\square B$ 卷

课程名称：Calculus on Differential Manifolds 课程代码：MATH120008．09
开课院系：力学与工程科学系 考试形式：开卷／闭卷／课程论文
姓名： \qquad学号： \qquad专业： \qquad

题号	$1 /(1)$	$1 /(2)$	$1 /(3)$	$1 /(4)$	$2 /(1)$	$2 /(2)$	$2 /(3)$	$2 /(4)$	$2 /(5)$	$2 /(6)$
得分										
题号	$3 /(1)$	$3 /(2)$	$3 /(3)$	$4 /(1)$	$4 /(2)$	$5 /(1)$	$5 /(2)$	$5 /(3)$	$5 /(4)$	$5 /(5)$
得分										
题号	$5 /(6)$	$5 /(7)$	$6 /(1)$	$6 /(2)$						总分
得分										

Problem 1 （The Application of the Diffeomorphism）The concept of diffeomorphism with its related results play the essential role to recognize the so－called differential manifolds．

1．To narrate the content of rank theorem．

2．To narrate the definition of differential manifolds．
3．To proof the following proposition．If a chart $\varphi: I^{k} \rightarrow U \subset S$ belongs to class $C^{(1)}\left(I^{k}, \mathbb{R}^{n}\right)$ and has maximal rank at each point of the cube I^{k} ，there exists a number $\varepsilon>0$ and a diffeomorphism $\varphi_{\varepsilon}: I_{\varepsilon}^{n} \rightarrow \mathbb{R}^{n}$ of the cube $I_{\varepsilon}^{n}:=\left\{t \in \mathbb{R}^{n}| | t^{i} \mid \leq \varepsilon_{i}, i=1, \cdots, n\right\}$ of dimension n in \mathbb{R}^{n} such that $\left.\varphi\right|_{I^{k} \cap I_{\varepsilon}^{n}}=\left.\varphi_{\varepsilon}\right|_{I^{k} \cap I_{\varepsilon}^{n}}$ ．

4．To prove that the unite sphere in \mathbb{R}^{3} is the differential manifold．

Problem 2 （Tangent and cotangent mapping）Let ϕ be the differential mapping between the differential manifolds M and N with $\operatorname{dim} M=m$ and $\operatorname{dim} N=n$ respectively．Its corre－ sponding tangent mapping is defined as follows

$$
\left(\phi^{*} \omega\right)_{i_{1}, \cdots, i_{r}}(x) \triangleq\left[\frac{\partial y^{\alpha_{1}}}{\partial x^{i_{1}}} \cdots \frac{\partial y^{\alpha_{r}}}{\partial x^{i_{r}}}\right](x) \omega_{\alpha_{1}, \cdots, \alpha_{r}}(y(x))
$$

1. To prove that

$$
\left\{\left(\phi^{*} \omega\right)_{i_{1}, \cdots, i_{r}}(x)\right\} \in \wedge^{r}(M)
$$

2. To prove the general identity

$$
\begin{array}{r}
\left(\phi^{*} \omega\right)(x) \quad \equiv \phi^{*}(y(x)) \omega(y(x))=\phi^{*}(y(x))\left[\frac{1}{r!} \omega_{\alpha_{1}, \cdots, \alpha_{r}}(y(x)) d y^{\alpha_{1}} \wedge \cdots \wedge d y^{\alpha_{r}}\right] \\
=\frac{1}{r!} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq m} \omega_{\alpha_{1}, \cdots, \alpha_{r}}(y(x))\left[\frac{\partial\left(y^{\alpha_{1}} \cdots y^{\alpha_{r}}\right)}{\partial\left(x^{i_{1}} \cdots x^{i_{r}}\right)}(x)\right] d x^{i_{1}} \wedge \cdots \wedge d x^{i_{r}} \in \wedge^{r}(M)
\end{array}
$$

for any $\omega(y)=\frac{1}{r!} \omega_{\alpha_{1}, \cdots, \alpha_{r}}(y) d y^{\alpha_{1}} \wedge \cdots \wedge d y^{\alpha_{r}} \in \wedge^{r}(N)$
3. To prove the general identity

$$
\phi^{*}(d \omega)=d\left(\phi^{*} \omega\right), \quad \forall \omega \in \wedge^{r}(N)
$$

4. To consider the following particular differential mapping

$$
\phi(x): \mathbb{R}^{4} \supset \mathscr{D}_{x} \ni x=\left[\begin{array}{c}
x^{1} \\
x^{2} \\
x^{3} \\
x^{4}
\end{array}\right] \mapsto \phi(x)=\left[\begin{array}{c}
y^{1} \\
y^{2} \\
y^{3} \\
y^{4}
\end{array}\right](x) \triangleq\left[\begin{array}{c}
C_{1} x^{1} \\
x^{1} x^{2} x^{3} x^{4} \\
C_{3} x^{3} \\
C_{4} x^{4}
\end{array}\right] \in \mathbb{R}^{4}
$$

where C_{1}, C_{3} and C_{4} are constants. To calculate

$$
\left(\phi^{*} \omega\right)(x), \quad \omega(y)=f\left(y^{2}\right) d y^{1} \wedge d y^{3} \wedge d y^{4} \in \wedge^{3}\left(\mathbb{R}^{4}\right)
$$

5. To calculate $d\left(\phi^{*} \omega\right)(x)$
6. To calculate $\left(\phi^{*} d \omega\right)(x)$

Problem 3 (Integral on Differential Manifold) The fundamentals of integral on differential manifold could be concluded as follows.

1. The integral of one p-form on the differential manifold with dimension p is defined as follows:

$$
\int_{\phi\left(I_{p}\right) \subset M} \omega^{p} \triangleq \int_{I_{p}} \phi^{*} \omega^{p}, \quad \omega^{p} \in \wedge^{p}(M)
$$

where $\phi(x) \in \mathscr{C}\left(I_{p}, \phi\left(I_{p}\right)\right)$ is any chart. To prove that it is well-definition, that is the value of the integral is independent on the choose of the charts.
2. The tours in \mathbb{R}^{3} could be represented as

$$
\Sigma(\theta, \phi): \mathscr{D}_{\theta \phi} \ni\left[\begin{array}{c}
\theta \\
\phi
\end{array}\right] \mapsto \Sigma(\theta, \phi)=\left[\begin{array}{c}
X^{1} \\
X^{2} \\
X^{3}
\end{array}\right](\theta, \phi) \triangleq\left[\begin{array}{c}
(R+r \cos \theta) \cdot \cos \phi \\
(R+r \cos \theta) \cdot \sin \phi \\
R+r \sin \theta
\end{array}\right]
$$

where $\theta \in[0,2 \pi]$ and $\phi \in[0,2 \pi]$. To calculate the integral

$$
\int_{\Sigma} d X^{1} \wedge d X^{3}
$$

3. To calculate the surface area of the torus through the following definition

$$
|\Sigma| \triangleq \int_{\mathscr{D}_{\theta \phi}} \sqrt{g} d \theta \wedge d \phi, \quad g \triangleq \operatorname{det}\left[g_{i j}\right]
$$

where $\left\{g_{i j}\right\}$ is the measure on the torus.

Problem 4 (Stokes Formula) The fundamentals of Stokes formula on differential manifold could be concluded as follows.

1. To prove the following relation of integral

$$
\int_{I_{p-1}} \omega^{p-1}=(-1)^{p} \int_{H_{p}^{+}} d \omega^{p-1}
$$

where

$$
\omega^{p-1}=\sum_{i=1}^{p} f_{i}(x) d x^{1} \wedge \cdots \wedge d \stackrel{\circ}{x}_{x} \wedge \cdots \wedge d x^{p}
$$

such that $\operatorname{supp}_{i}\left(x^{1}, \cdots, x^{p-1}, 0\right) \subset I_{p-1}$ and $f_{i}\left(x^{1}, \cdots, x^{p-1}, 1\right)=0$ for all $1 \leq i \leq p-1$.
2. The general form of the Stokes formula is

$$
\int_{\partial M} \omega^{p-1}=(-1)^{p} \int_{M} d \omega^{p-1}, \quad \omega^{p-1} \in \wedge^{p-1}(M)
$$

where $\operatorname{dim} M=p$. To calculate the following integral through Stokes formula

$$
\oint_{\Sigma} X^{2} d X^{1} \wedge d X^{3}+X^{1} d X^{3} \wedge d X^{2}
$$

where Σ is the torus in \mathbb{R}^{3}

Problem 5 (Field Analysis on the Surface-Case Study) To consider the so-called HelicalSurface

$$
\Sigma(u, v): \mathbb{R}^{2} \supset \mathscr{D}_{u v} \ni\left[\begin{array}{l}
u \\
v
\end{array}\right] \mapsto \Sigma(u, v)=\left[\begin{array}{c}
X^{1} \\
X^{2} \\
X^{3}
\end{array}\right](u, v) \triangleq\left[\begin{array}{c}
u \cos v \\
u \sin v \\
h v
\end{array}\right] \in \mathbb{R}^{3}
$$

1. To give the measure, i.e.the first form, on the surface that could be represented by the matrix $\left[g_{i j}\right] \in \mathbb{R}^{2 \times 2}$
2. To give the second form on the surface that could be represented by the matrix $\left[b_{i j}\right] \in \mathbb{R}^{2 \times 2}$
3. To calculate the Gauss and Mean curvatures denoted by K_{G} and H respectively.
4. To give the connection on the surface that is compatible to the given measure.
5. To determine the parallel-moving vector field following the trajectory

$$
\gamma(v):[0,2 \pi] \ni v \mapsto \gamma(v)=\left[\begin{array}{c}
X^{1} \\
X^{2} \\
X^{3}
\end{array}\right](v) \triangleq\left[\begin{array}{c}
a \cos v \\
a \sin v \\
h v
\end{array}\right] \in \Sigma
$$

6. To calculate the Riemann-Christoffel tensor $R_{i j p q}$ on the surface through the Gauss equation, namely,

$$
R_{i j k l}=b_{i k} b_{j l}-b_{j k} b_{i l}
$$

7. To prove the following identity

$$
R_{i j k l}=K_{G}\left(g_{i k} g_{j l}-g_{j k} g_{i l}\right)
$$

that is just valid for 2 dimensional differential surface in \mathbb{R}^{3}.

Problem 6 (Field Analysis on the Surface-General Study) To consider the general $n-$ 1 dimensional differential surface in \mathbb{R}^{n}

1. To deduce the so-called Gauss \mathcal{B} Codazzi equations for

$$
\begin{aligned}
& R_{i j k l}=b_{i k} b_{j l}-b_{j k} b_{i l} \\
& \nabla_{p} b_{q j}=\nabla_{q} b_{p j}
\end{aligned}
$$

2. To deduce the so-called Ricci identity

$$
\nabla_{p} \nabla_{q} \Phi_{\cdot j}^{i}-\nabla_{p} \nabla_{q} \Phi_{\cdot j}^{i}=R_{s p q}^{i} \Phi_{\cdot j}^{s}-R_{j p q}^{s} \Phi_{\cdot s}^{i}
$$

Generally, this identity could be extended to the tensor with any order.

Note: To give the deduction and calculation in detail. And as the score is considered, the reflection of the correct methodologies is oriented.

