Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Polynomial time algorithms

Almost all the algorithms we have studied thus far have been polynomial-time algorithms.

- On input of size n, their worst-case running time is $O\left(n^{k}\right)$ for some constant k.

Undecidable

HALTS (P, X)
DIAGONAL (X)

1. a : if $\operatorname{HALTS}(X, X)$
2. then goto a
3. else halt

How about DIAGONAL(DIAGONAL)

Shortest vs. longest simple paths

Shortest simple path
Given a directed graph $G=(V, E)$, find the shortest simple path between two vertices.

Longest simple path
Given a directed graph $G=(V, E)$, find the longest simple path between two vertices.

Konigsberg's Bridges Problem

The river Pregel divides the town of Konigsberg into four separate land masses, A, B, C, and D. Seven bridges connect the various parts of town, and some of the town's curious citizens wondered if it were possible to take a journey across all seven bridges without having to cross
 any bridge more than once.

Euler tour vs. Hamiltonian cycle

Euler tour
An Euler tour of a connected, directed graph $G=(V, E)$ is a cycle that traverses each edge of G exactly once.

Hamiltonian cycle

An Hamiltonian cycle of a directed graph $G=(V, E)$ is a simple cycle that contains each vertex in V.

Euler tour

Traveling salesman problem

Analysis of traveling salesman problem

Given a finite number of "cities" along with the cost of travel between each pair of them, find the cheapest way of visiting each city exactly once and finishing at the city he starts from.

- 19 Cities
- Possible routes $=18!=6.40237 \times 10^{15}$
- life time $=80 \times 365 \times 24 \times 60 \times 60$

$$
=3,1536 \times 10^{9}
$$

- Computer speed $=10000$ routes/second

> 253.77 Generation!

Certificate

- The class NP consists of those problems that are "verifiable" in polynomial time.
- If we were given a certificate of a solution, then we could verify that the "certificate" is correct in time polynomial in the size of the input to the problem.

$\mathbf{P} \subseteq \mathbf{N P}$

$\mathbf{P} \subset \mathbf{N P}$ or $\mathbf{P}=\mathbf{N} \mathbf{P}$

The Clay Mathematics Institute is offering a US\$1 million reward to anyone who has a formal proof that problem

NP-complete

- a problem is in the class NPC-and we refer to it as being NP-complete-if it is in NP and is as "hard" as any problem in NP.
- Most theoretical computer scientists believe that the NP-complete problem are intractable.
- Given the wide range of NP-complete problems that have been studied to date without anyone having discovered a polynomial time solution to any of them.
- It is important to become familiar with this remarkable class of problems.

The clique problem

A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ of vertices, each pair of which is connected by an edge in E.

- The size of a clique is the number of vertices it contains.
- The clique problem is the optimization problem of finding a clique of maximum size in a graph.

$$
\begin{aligned}
\text { CLIQUE }=\{<G, k>: & G \text { is a graph with } \\
& \text { a clique of size } k\} .
\end{aligned}
$$

The vertex-cover problem

A vertex-cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$, then $u \in V^{\prime}$ or $v \in V^{\prime}$ (or both).

- The size of a vertex cover is the number of vertices in it.
- The vertex cover problem is to find a vertex cover of minimum size in a given graph.

VERTEX-COVER $=\{<G, k>: G$ is a graph has a vertex cover of size $k\}$.

Complement of graph

Given an undirected graph $G=(V, E)$, define the complement of G as $\bar{G}=(V, \bar{E})$, where $\bar{E}=\{(u, v): u, v \in V, u \neq v$, and $(u, v) \notin E\}$.

Reduction

Graph G has a clique of size k if and only if the graph \bar{G} has a vertex cover of size $|V|-k$.

NP complete

NP-complete and P

NP_Complete	Polynomial-Time
3SAT	2SAT
Traveling Salesman Problem	Minimum Spanning tree
Longest Path	Shortest Path
3D Matching	Bipartite Matching
Knapsack	Unary Knapsack
Independent Set	Independent Set on Trees
Integer Linear Programming	Linear Programming
Rudrata Path	Euler Path
Balanced Cut	Minimum Cut

Problem classification

- P (polynomial)
- NPC (NP-Complete)
- EXP (exponential)
- Undecidables

Approximation algorithms

Traveling salesman problem

Triangle inequality

Dealing with hard problems

What to do if:

- Divide and conquer
- Dynamic programming
- Greedy algorithm
- Network Flows
- Linear Programming

Linear programming

Products	Machine time	Raw materials	Profits
A	3	3	120
B	5	2	100
Total	600	500	

Maximize $120 x_{A}+100 x_{B}$
subject to

$$
\begin{aligned}
& 3 x_{A}+5 x_{B} \leq 600 \\
& 3 x_{A}+2 x_{B} \leq 500 \\
& x_{A}, x_{B} \geq 0
\end{aligned}
$$

- Number-theoretic algorithms
- Computational geometry
- Linear Programming

Any question?

Xiaoqing Zheng
Fundan University

