
Discrete Mathematics (II) Spring 2012

Lecture 9: Deduction from Premises,Compactness, and Applications

Lecturer: Yi Li

1 Overview

In lecture 7, we introduce a tableau proof system to prove the validity of a proposition. But we
should handle whether α is a logic consequence of Σ or not. Here, Σ is called a set of premises.

Mathematical Logic is a corner stone of modern computer science. In this lecture, we also show
you how to apply propositional logic to other problems.

2 Deduction from Premises

Because a set of premises is introduced, we should define a new type of tableau proof system to
handle the premises.

If α is a consequence of Σ, then any V satisfing Σ should also make α true. The problem can
be simplified by considering the case when αi ∈ Σ. Then, we can introduce a proposition αi into
tableau in the form of Tαi.

Definition 1 (Tableaux from premises). Let Σ be (possibly infinite) set of propositions. We define
the finite tableaux with premises from Σ by induction:

1. Every atomic tableau is a finite tableau from Σ

2. If τ is a finite tableau from Σ and α ∈ Σ, then the tableau formed by putting Tα at the end
of every noncontradictory path not containing it is also a finite tableau from Σ.

3. If τ is a finite tableau from Σ, P a path in τ , E an entry of τ occurring on P and ′τ is
obtained from τ by adjoining the unique atomic tableau with root entry E to the end of the
path P , then ′τ is also a finite tableau from Σ.

If τ0, . . . , τn, . . . is a (finite or infinite) sequence of finite tableaux from Σ such that, for each n ≥
0, τn+1 is constructed from τn by an application of (2) and (3), then τ = ∪τn is a tableau from Σ.

Similarly, we can redefine tableau proof as following:

Definition 2. A tableau proof of a proposition α from Σ is a tableau from Σ with root entry Fα
that is contradictory, that is, one in which every path is contradictory. If there is such a proof we
say that α is provable from Σ and write it as Σ ` α.

To CST, we have the following property.

1



Theorem 3. Every CST from a set of premises is finished.

Unlike the CST in previous lecture, we can not guarantee the tableau to be finite. Because Σ could
be a inifinite set. It means we can introduce premises as many as possible into our tableau.

Anyway, every entry in CST would be finally reduced. We can give several ways to expand CST
in detail. Even if the proposition is an infinite sequence, we can also obtain the same property.

3 Soundness Theorem

We first give the following lemma.

Lemma 4. If a valuation V makes every α ∈ Σ true and agrees with the root of a tableau τ from
Σ, then there is a path in τ every entry of which agrees with V.

It sets up a connection between truth valuation V and sign of entries along noncontradictory path.
When giving proof, we need handle propositions introduced from Σ whose corresponding entry is
always with sign T .

By this lemma, we can easily prove the following soundness theorem.

Theorem 5 (Soundness). If there is a tableau proof of α from a set of premises Σ, then α is a
consequence of Σ, i.e. Σ ` α⇒ Σ � α.

Soundness theorem means that a propositon must be a logic consequence of Σ if it can be deduced
from Σ.

4 Completeness Theorem

Similarly, we have the following Lemma.

Lemma 6. Let P be a noncontradictory path in a finished tableau τ from Σ. Define a valuation V
as the last section, then it agrees with all entries on P and so in particular makes every proposition
β ∈ Σ true.

It is nearly the same as previous proof for completeness theorem without premises except that
propositions from Σ should be handled specially.

With this lemma, we have completeness theorem.

Theorem 7 (Completeness). If α is consequence of a set Σ of premises, then there is a tableau
deduction of α from Σ, i.e., Σ � α⇒ Σ ` α.

Completeness theorem says that if a propostion is a consequence of a set of propositions, it can be
deduced from this set.

2



5 Compactness Theorem

Theorem 8 (finite proof). If τ = ∪τn is a contradictory tableau from Σ, then for some m, τm is a
finite contradictory tableau from Σ. In particular, if a CST from Σ is a proof, it is finite.

It means a tableau proof is a finite sequence of trees.Otherwise we can imply contradiction that
the tableau is not a tabeau proof.

With finite proof theorem, we have a type of compactness theorem by using completeness and
soundness theorem.

Theorem 9. α is a consequence of Σ if and only if α is a consequence of some finite subset of Σ.

Sketch. We apply completeness theorem first and get Σ ` α. For any tableau proof must be finite,
we can collect all proposition introduced from Σ and form a finite set Σ0. The tableau also shows
Σ0 ` α. We then apply soundness theorem and obtain Σ0 |= α. It is proved now.

However, compactness theorem can be directly proved. We have the following version.

Theorem 10 (Compactness). Let Σ = {αi|i ∈ ω} be an infinite set of a propositions. Σ is
satisfiable if and only if every finite subset Γ of Σ is satisfiable.

Generally, if V1 and V2 satisfy Σ1 and Σ2 respectively, it does not mean the union of two truth
valuation would satisfy all propositions in two sets.

Sketch. Consider the tableau with root

F (¬α ∧ α).

We already know that (¬α ∧ α) is always false, which means that any truth valuation V always
agrees with the root entry. If it is a finite tableau, every path of tableau is contradictory. It means
that all propositions in Σ along a contradictory path is unsatisfiable. It is contradictory to every
finite subset is satisfiable. So there is a infinite path in the tableau.

This compactness theorem transform a problem with infinite propositions to a infinite sequence of
finite propositions.

6 Circuit and Proposition

Let’s take 0, 1 as F, T respectively. We can use circuit gate to represent ∧,∨ and ¬ as and,or,not
respectively. So given any proposition, we can design a circuit to compute the truth value with the
specific input.

Example 1. Consider the circuit1 for the following propositions:

1The circuit will be drawn in the future.

3



1. (A1 ∧A2) ∨ (¬A3))

2. (A ∧B ∧D) ∨ (A ∧B ∧ ¬C)

The complexity of circuits depends on the complexity of proposition. We usually call the depth of
proposition as delay of circuit and the number of gates as power consumption. To design a good
circuit, we try to minimize delay and power consumption.

Example 2. Consider the boolean function majority of {A,B,C}. It means that the value of
function depends on the majority of input.

Solution: We first consider its truth value table, we can simple connectives to represent majority.

m(A,B,C) = (A ∧B ∧ C) ∨ (A ∧B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (¬A ∧B ∧ C)

= (B ∧ C) ∨ (A ∧ C) ∨ (A ∧B)

= (A ∧ (B ∨ C)) ∨ (B ∧ C)

In another way, we can depict the boolean function with a state diagram and then design the circuit
accroding it. This method will be introduced in the successor course Digital Component Desing.

7 Formalize Problems with Propositions

Example 3. Suppose there is a murder case with three suspects. The police queried them about
murder case.

A said,”I didn’t do it. The victim is a friend of B. And C hates him.” B said, ”I didn’t do it. Even
I don’t know him. And I am not present.” C said, ”I didn’t do it. I saw A and B stayed with the
victim in that day. The murder must be one of them.”

Solution: Suppose only murder would lie. We try to formalize it with the following propositions:

1. A: A killed victim.

2. BKV : B knows the victim.

3. AP : A is present.

4. CHV : C hates the victim.

5. (A ∧ ¬B) ∨ (¬A ∧B): murder is either A or B.

Now we can represent the satement of each sucpects as following:

1. A: ¬A ∧BKV ∧ CHV .

2. B: ¬B ∧ ¬BKV ∧ ¬BP .

3. C: ¬C ∧AP ∧BP ∧ ((A ∧ ¬B) ∨ (¬A ∧B)).

4



It is easy to know that the maximal satisfiable set of propositions can only contain A’s and C’s
statement. Then we can imply that B would be the murder.

Example 4. Consider the pigeonhole principle: f : n+ → n,∃i, j, f(i) = f(j), where 0 ≤ i < j ≤
n.

Solution: let pij means f(i) = j. Then we can describe everywhere defined property as

α1 = ∧0≤i≤n ∨0≤j<n pij

and we can describe single value as

α1 = ∧0≤i≤n ∧0≤j 6=k<n ¬(pij ∧ pik)

Now we can describe pigeonhole principle as

ϕ = (α1 ∧ α2) ∧ (∨0≤i<j≤n ∨0≤k<n (pik ∧ pj,k))

Remark: This form of pigeonhole is much harder to recognize than its original version. However,
it is described by a much more rigid language compared with our natural language, which could
result in ambiguities.

In fact, mathematical logic can be applied into program verification, model checking, and such
other applications. European Space Agency only uses software which has gotten through program
verification.

8 Application of Compactness Theorem

Compactness theorem is a very important result in mathematical logic. It establishes a connection
between infinity and finitude.

Example 5. Given an infinite planar graph. If its every finite subgraph is k-colorable, then the
graph itself is also k-colorable.

A graph is G =< V,E >, where V is the set of vertices and E ⊆ V 2 is the set of all edges. If
(a, b) ∈ E, it is denoted as aEb sometimes. G is k-colorable if V can be decomposed into k-color
classes V = C1 ∪ C2 ∪ · · · ∪ Ck, where Ci 6= ∅ and Ci ∩ Cj = ∅ if i 6= j. It is obvious (a, b) 6∈ E if
a, b ∈ Ci.

A finite subgraph is k-colorable. It means there is a k-colorable graph G0 =< V0, E0 > , where
V0 ⊂ V is a finite set and E0 ⊂ E is the set determined by V0.

Proof. Let pa,i represent vertex a is colored with i. We can formulate a graph which is k-colorable
with the following propositions.

1. pa,1 ∨ pa,2 ∨ · · · ∨ pa,k, for every a ∈ V . It means every vertex could be colored with at least
one of k colors.

2. ¬(pa,i ∧ pa,j), 1 ≤ i < j ≤ k for all a ∈ V . It means Ci ∩ Cj = ∅.

5



3. ¬(pa,i ∧ pb,i), i = 1, . . . , k for all aEb. It means no neighbors have the same color .

Then we get a set X with infinite propositions. For any finite subset X0 ⊂ X, we can extract
vertices V0 from it and construct a set X1 which describe the graph G0 generated by V0. For every
finite subgraph is k-colorable, X1 is satisfiable. X0 must be satisfiable.

According to compactness theorem, X is satisfiable which means the graph is k-colorable.

Remark: Generally, this theorem is not easy to prove via graph approach. Because there is no
effective way to find it possible that a big graph is still k-colorable merged by two k-colorable graph.
However, Compactness Theorem does not need this requirement. Here, we should be aware that
a set of propositions is constructed and we try to prove that every finite subset of it is satisfiable,
which is the essence of Compactness Theorem.

Example 6. Every set S can be (totally) ordered.

Similarly, it can be proved like k-colorable infinite graph. The point is to represent our problem
with a set of propositions. This is left as an exercise.

Hints: A set is partial order at least. If you can change a partially ordered set into a linear order
set, you successfully complete the proof.

9 König Lemma and Compactness Theorem

In our textbook, Compactness Theorem is proved by König lemma. Now we will show you that it
can be proved by Compactness Theorem.

Lemma 11 (König). A infinite tree with finite branch has a infinite path.

Actually, the problem can be represented as following. If every a ∈ T has only finitely many
immediate successor and T contains arbitrarily long finite paths, then there is a infinite path in T
starts at root.

Proof. Tree is a hierarchical structure. It means that the vertices of a tree could be divided into
many sets which corresponds to vertices in some level. So we can define S0 = {c|c is the root} and
Sk = {b ∈ T | there is a a ∈ Sk and b is a immediate successor of a}. For every k, Sk is finite and
no Sk is empty because of infinity of given tree.

Denote pa as that vertex a is in path P . We now represent a tree with a set of propositions, Σ, as
following:

1. ∨a∈Sk
pa: there is at least one vertex of level k in a path;

2. ∨a,b∈Sk
¬(pa ∧ pb): there is only one vertex of level k in path p.

3. pa → pb: b is a immediate successor of a.

6



For there are infinite vertices, we have infinite propositions. If they are all satisfiable. We do know
there is a infinite path. Given a subset Σ0, it is just a part of subtree with height k. Then we
just add missed propositions into Σ0 and obtain the subtree represented by Σ′0. As the tree has
arbitrarily long finite paths. We know Σ′0 is satisfiable and also Σ0. Now we just apply compactness
theorem to get final result.

In textbook, compactness theorem of proposition logic is proved based on König lemma. Here we
prove inversely.

Exercises

1. Let Σ be finite set of propositions and ∧Σ the conjunction of its members. Prove that for
any proposition α the following are equivalent:

(a) Σ |= α.

(b) |= ∧Σ→ α.

(c) Σ ` α
(d) ` ∧Σ→ α.

2. Suppose Σ is a finite set of propositions. Show that every CST from Σ is finite.

3. Prove {A ∨ ¬B,B ∨ ¬C,C ∨ ¬D} |= (D → A).

4. Suppose proposition could be infinite long. Define a new method to construct a CST and
prove that every CST is finished.

5. Design a circuit for multiply with two two bits input and four bits output. For example, we
have 1 ∗ 1 = 1, 10 ∗ 11 = 110.

7


