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Lecture 6: Truth Assignments and Valuations
Lecturer: Yi Li

1 Overview

In this lecture, we define truth assignments and valuations in order to get rid of truth
table, which is tedious. Finally, a truth valuation can be determined uniquely by a truth
assignment. Sometimes, we call it the semantics of propositional logic. Correspondingly,
well-defined proposition is called the syntax of propositional logic.

Given a set of propositions and a proposition, we can bind them in the point of view of truth
valuation. Here we only connect them by truth valuation but syntax.

2 Assignments and Valuations

Propositional letters are the simplest propositions. There is no constraint between each
other. We just define an operation, called assignment, which assigns a value true or false on
every propositional letter.

Definition 1 (Assignment). A truth assignment A is a function that assigns to each propo-
sitional letter A a unique truth value A(A) ∈ {T, F}.

Generally, a proposition is a sequence of symbols constructed according to some rules de-
termined in previous lecture. Whether it is true or false can not be simply assigned like
propositional letters.

Consider an example in Figure 1.

Example 1. Truth assignment of α and β and valuation of (α ∨ β).

α β (α ∨ β)
T T T
T F T
F T T
F F F

Figure 1: Truth assignment and valuation
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We can infer from the example that truth valuation of a propostion is determined by those
propositions which it is based on.

We define the following term to guarantee the truth of a compound proposition.

Definition 2 (Valuation). A truth valuation V is a function that assigns to each proposi-
tion α a unique truth value V(α) so that its value on a compound proposition is determined
in accordance with the appropriate truth tables.

Here, we should remember that truth valuation determines all propositions generated ac-
cording to definition. Especially, when α is a propositional letter we have V(α) = A(α) for
some A.

Generally, we have the following theorem:

Theorem 3. Given a truth assignment A there is a unique truth valuation V such that
V(α) = A(α) for every propositional letter α.

Proof. The proof can be divided into two step.

1. Construct a V from A by induction on the depth of the associated formation tree.

2. Prove the uniqueness of V with the same A by induction bottom-up.

which show us the relation between truth assignment and truth valuation.

We now consider a specific proposition α. There is a corollary.

Corollary 4. If V1 and V2 are two valuations that agree on the support of α, the finite set
of propositional letters used in the construction of the proposition of the proposition α, then
V1(α) = V2(α).

Given a proposition, there is a case that it is always true whatever the truth valuation is.

Definition 5. A proposition σ of propositional logic is said to be valid if for any valuation
V ,V(σ) = T . Such a proposition is also called a tautology.

Example 2. α ∨ ¬α is a tautology.

Solution:

α ¬α α ∨ ¬α
T F T
F T T
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α β α→ β
T T T
T F F
F T T
F F T

α β ¬α ¬α ∨ β
T T F T
T F T F
F T T T
F F T T

Figure 2: Logically equivalent propositions

Consider the following example.

Example 3. α→ β ≡ ¬α ∨ β.

Proof. Prove by truth table in Figure 2.

Although, they have different formation tree. But they are the same if they are only char-
acterized by truth valuation.

Definition 6. Two proposition α and β such that, for every valuation V ,V(α) = V(β) are
called logically equivalent. We denote this by α ≡ β.

3 Consequence

In practice, we often mention a pattern that a result can be inferred from some facts. We
now consider this pattern from the point of view of semantics.

Definition 7. Let Σ be a (possibly infinite) set of propositions. We say that σ is a conse-
quence of Σ (and write as Σ |= σ) if, for any valuation V,

(V(τ) = T for all τ ∈ Σ)⇒ V(σ) = T.

Example 4. 1. Let Σ = {A,¬A ∨B}, we have Σ |= B.

2. Let Σ = {A,¬A ∨B,C}, we have Σ |= B.

3. Let Σ = {¬A ∨B}, we have Σ 6|= B.

Definition 8. We say that a valuation V is a model of Σ if V(σ) = T for every σ ∈ Σ. We
denote by M(Σ) the set of all models of Σ.

Example 5. Let Σ = {A,¬A ∨B}, we have models:

1. Let A(A) = T,A(B) = T
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2. Let A(A) = T,A(B) = T,A(C) = T .

3. Let A(A) = T,A(B) = T,A(C) = F,A(D) = F, . . ..

Definition 9. We say that propositions Σ is satisfiable if it has some model. Otherwise it
is called invalid.

Proposition 10. Let Σ,Σ1,Σ2 be sets of propositions. Let Cn(Σ) denote the set of conse-
quence of Σ and Taut the set of tautologies.

1. Σ1 ⊆ Σ2 ⇒ Cn(Σ1) ⊆ Cn(Σ2).

2. Σ ⊆ Cn(Σ).

3. Taut ⊆ Cn(Σ) = Cn(Cn(Σ)).

4. Σ1 ⊆ Σ2 ⇒M(Σ2) ⊆M(Σ1).

5. Cn(Σ) = {σ|V(σ) = T for all V ∈ M(Σ)}.

6. σ ∈ Cn({σ1, . . . , σn})⇔ σ1 → (σ2 . . .→ (σn → σ) . . .) ∈ Taut.

Theorem 11. For any propositions ϕ, ψ, Σ ∪ {ψ} |= ϕ⇔ Σ |= ψ → ϕ holds.

Proof. Prove by the definition of consequence.

With this Theorem 11, we can prove result 6 in Proposition 10 by induction.

Exercises

1. Check whether the following propositions are valid or not

(a) (A→ B)↔ ((¬B)→ (¬A))

(b) A ∧ (B ∨ C)↔ (A ∧B) ∨ (A ∧ C)

2. Prove or refute each of the following assertions:

(a) If either Σ |= α or Σ |= β, then Σ |= (α ∨ β).

(b) If Σ |= (α ∧ β), then both Σ |= α and Σ |= β.

3. Prove the following assertion:

(a) Cn(Σ) = Cn(Cn(Σ)).

(b) Σ1 ⊂ Σ2 ⇒M(Σ2) ⊂M(Σ1).

(c) Cn(Σ) = {σ | V(σ) = T for all V ∈ M(Σ)}.
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(d) σ ∈ Cn({σ1, . . . , σn})⇔ σ1 → (σ2 . . .→ (σn → σ) . . .) ∈ Taut.

4. Suppose we have two assertions, where α and β both are propostions and Σ is a set of
propositions:

(a) If Σ |= A, then Σ |= B.

(b) Σ |= (A→ B).

Show the relation between them. It means whether one can imply another.
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