

RFID Data Mining: Opportunities and Challenges

Joshua Huang E-Business Technology Institute The University of Hong Kong

25 August 2007 WSIETA2007 Chengdu, Sichuan, China

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

- Passive Tags
 - Without battery.
- Active Tags
 - With battery

• Readers

"Quietized" Fully Enclosed Conveyor Tunnel

RFID middleware

RFID applications

Library Example

Book search and inventory

Security control and check out

Bridging Physical and Digital Worlds

O Detail O Overview		Warehouse Stacks			Evansville	1	
Vaults	Sofa Rack	Rug Rack	On Top	OS Area			
Loc: 1A Top Williams 7964	003 Andrea 09000.100/00007	Loc: 2A Top Duck Creek Cap:	127 Ltal Prt 09000.100/00017	Loc: 3A Top Seagle 6229	018 Linda 09000.100/00026	Loc: 4-A Scott 7486	04 Bill 0900
Loc: 1A Bottom Williams 7964	077 Andrea 09000.100/00007	Loc: 2A Bottom Duck Creek Capi	143 ital Prt 09000.100/00017	Loc: 3A Bottom Seagle 6229	001A Linda 09000.100/00026	Loc: 4-A Scott 7486	11 Bill 0900
Loc: 1B Top Williams 7964	005 Andrea 09000.100/00007	Loc: 2B Top Duck Creek Cap:	158 ital Prt 09000.100/00017	Loc: 3B Top Seagle 6229	153 Linda 09000.100/00026	Loc: 4-B Scott 7486	15 Bill 0900
Loc: 1B Bottom Williams 7964	006 Andrea 09000.100/00007	Loc: 2B Bottom Seagle 6229	146 Linda 09000.100/00026	Loc: 3B Bottom Seagle 6229	099 Linda 09000.100/00026	Loc: 4-B Scott 7486	09 Bill 0900
Loc: 1C Top Mayer 32252	161 Sylvia 09000.100/00021	Loc: 2C Top	156	Loc: 3C Top Anderson 7246	072 Barbara 09000.100/00023	Loc: 4-C	
Loc: 1C Bottom Williams 7964	007 Andrea 09000.100/00007	Loc: 2C Bottom	008	Loc: 3C Bottom Anderson 7246	120 Barbara 09000.100/00023	Loc: 4-C Scott 7486	12 Bill 0900
Loc: 1D Top Mayer 32252	104 Sylvia 09000.100/00021	Loc: 2D Top	159	Loc: 3D Top Anderson 7246	035 Barbara 09000.100/00023	Loc: 4-D	
Loc: 1D Bottom Mayer 32252	142 Sylvia 09000.100/00021	Loc: 2D Bottom	152	Loc: 3D Bottom Anderson 7246	041 Barbara 09000.100/00023	Loc: 4-D	
		Loc: 2E Top Mayer 32252	119 Sylvia 09000.100/00021	Loc: 3E Top Williams 7964	073 Andrea 09000.100/00007	Loc: 4-E	
<							>

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

Logistics and Supply Chain Management

- Logistics ...the process of planning, implementing, and controlling the efficient, effective flow and storage of goods, services, and related information from point of origin to point of consumption for the purpose of conforming to customer requirements. -- (Council of Logistics Management, http://www.clm1.org/mission.html, 12 Feb 98)
- Supply Chain Management (SCM) ...the oversight of materials, information, and finances moving in a process from supplier to manufacturer to wholesaler to retailer to consumer. SCM involves coordinating and integrating these flows both within and among companies.

• Supply Chain Model

- Supply types
 - One-origin/one-destination
 - One-origin/multiple-destinations
 - Multiple-origins/one-destination
 - Multiple-origins/multiple-destinations

Business Objectives

- Cost reduction
- Inventory control
- Reduce lead time

- Problems
 - Mismatch between physical inventory and inventory database
 - Lack of information sharing for entire supply chain optimization

- Bridge the gaps between physical inventory and digital inventory
- Real time data collection to update inventory databases
- Enable information sharing, e.g., through EPC network
- Real time product tracking and positioning
- Enable global supply chain optimization

Food Supply Chain Example

 Radio tag placed on carton.
Dairy ships carton to grocery store.
Consumer purchases tagged carton.
Consumer recycles milk carton.
Carton arrives at recycling center. Manufacturer produces replacement.

Manufacturer tracks product through wireless radio communication.

Products are tracked through their entire lifetime

Source: How Stuff Works

- RFID enabled supply chain operation will generate massive data that needs to be stored, managed and analyzed
- How much data?
 - Consider a supermarket chain implementing RFID:
 - 12 bytes EPC + Reader ID + Time = 18 bytes per tag
 - Average number of tags in a neighborhood store = 700,000
 - Data generated per second = 12.6 GB
 - Data generated per day = 544 TB
 - Assuming 50 stores in the chain,
 - *data generated per day = 2720 TB*

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

tag

tag

tag

tag

tag

tag

Data Collection and Processing

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

RFID Data Collection and Preprocessing

Data collection problems

- False readings, i.e., read unexpected tags
- Duplicate readings, e.g., same reader reading many times, multiple readers reading the same tag
- Missed readings, i.e., tags undetected due to RF interference, or malfunctions of tags or readers
- High speed and large volume, e.g., many tags present to many readers

• Solutions

- Multiple cycles reading to reduce missed readings
- Data filtering and cleansing to remove duplicates and false readings
- Data abstraction and compression

- Raw Data
 - (EPC, location, time)
 - Duplicate records due to multiple readings of a product at the same location
 - $(r_1, l_1, t_1) (r_1, l_1, t_2) \dots (r_1, l_1, t_{10})$
- Cleansed Data: Minimal information to store and removal of raw data
 - (EPC, Location, time_in, time_out)
 - (r_1, l_1, t_1, t_{10})
- Fill-up missing records and correct wrongly-registered information through multiple data collection points (e.g., manufacturing process, different storages at large distribution centers)

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

- Identify an object at a specific time and a specific location
 - Three essential data elements:
 - Object identification, location and time: (ID, Loc, T)
 - Data of other attributes of identified objects are stored in a database and can be matched through ID
- A lot of ID data are collected from readers in the business process

Electronic Product Code 96 bits Standard

Header - Tag version number EPC Manager - Manufacturer ID Object class - Manufacturer's product ID Serial Number - Unit ID

With 96 bit code, 268 million companies can each categorize 16 million different products where each product category contains up to 687 billion individual units

- Different applications may require different data schema designs
- Data models must support data queries and analysis
- In supply chain management, modeling the process flow is important

www.aeroid.co.uk/rfidbasics.html

- Indexing on EPC code
 - How to build the EPC code index to support query and analysis
- EPC code based fast query processing
 - Query related to different parts of EPC code
- Distributed data management

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

- Data query and analysis are often event-oriented
- Events are defined in different ways and at different levels
- Event processing generates different events from raw RFID data

Grouping Data Into Different Events with GID

- Objects often move and stay together (e.g., purchase orders, shipments)
- If 1000 packs of soda stay together at the distribution center, register a single record
 - (GID, distribution center, time_in, time_out)
- GID is a group identifier that represents the 1000 packs that stayed together at the distribution center

Different Events Generated for Different Purposes

Store View:

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

- Classification
- Prediction
- Clustering
- Association Analysis

RFID Data Mining Research

- Data mining problems
 - RFID data cleansing
 - Event based data mining
 - Event classification
 - Event prediction
 - Event clustering
 - Event association
 - Outlier event detection and analysis
- New techniques
 - Efficient algorithms
 - Distributed data mining
- Applications
 - Supply chain analysis and optimization
 - Inventory control
 - Supply chain management

- Event analysis at each node
 - Distribution of durations at each node
 - Distribution of transition probabilities
 - Exceptions to duration and transition probabilities
- Path event analysis
 - Clustering and categorization
 - Classification and prediction
 - Outlier analysis

- Frequent patterns and sequential patterns can be related to event movement and paths
 - Correlation analysis of different events
 - Sequential event patterns

- Outlier event detection (by-product of event mining)
 - Event flow analysis: Detect those not in the major flows
 - Classification: Treat outliers and normal events as different class labels
 - Cluster analysis: Identify those that are deviate substantially in major clusters
 - Trend analysis: Those not following the major trend

- Overview of RFID Technology and Applications
- RFID in Logistics and Supply Chain Management
- Research Areas
 - Data Collection and Processing
 - Data Management
 - Event Processing
 - Data Mining
- Summary

- In general, RFID data mining is still a young, largely unexplored field, therefore, a lot of opportunities.
- RFID data mining has close links with sensor data mining, moving object data mining, work flow data mining and stream data mining (where one can find related work and techniques)
- RFID data mining research should be closely related to applications

Thank You

RFID Enabled Supply Chain

Automatic Verification and Inventory Reconciliation

