Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Suppose we have a set $S = \{a_1, a_2, ..., a_n\}$ of *n* proposed *activities* that wish to use a resource which can be used by only one activity at a time.

Consider the following set S of activities

i	1	2	3	4	5	6	7	8	9	10	11
s _i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Activities a_i and a_j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not *overlap*.

i	1	2	3	4	5	6	7	8	9	10	11
s _i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Subset $\{a_3, a_9, a_{11}\}$

It is not a *maximal* subset of mutually compatible activities!

i	1	2	3	4	5	6	7	8	9	10	11
s _i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Subset $\{a_1, a_4, a_8, a_{11}\}$

It is a *largest* subset of mutually compatible activities.

i	1	2	3	4	5	6	7	8	9	10	11
<i>S</i> _i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Subset $\{a_2, a_4, a_9, a_{11}\}$

It is a *largest* subset of mutually compatible activities too.

Brute-force

Activity-selection problem is to select a maximum-size subset of mutually compatible activities.

Analysis

- Checking = O(n) time per subset of *S*.
- 2^n subset of *S*.
- Worst-case running time = $O(n2^n)$

= exponential time.

It is infeasible!

Structure of Activity-selection problem

 $S_{ij} = \{a_k \in S: f_i \le s_k \le f_k \le s_j\}$ denote the subset of activities in *S* that can start after activity a_i finishes and finish before activity a_i start.

Suppose now that an optimal solution A_{ij} to S_{ij} includes activity a_k . Then the solutions A_{ik} to S_{ik} and A_{kj} to S_{kj} used within this optimal solution to S_{ij} must be optimal as well.

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

Recursive solution

Let c[i, j] be the number of activities in maximum-size subset of mutually compatible activities in S_{ii} .

Recursive definition of c[i, j] becomes

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = 0\\ \max_{i < k < j} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq 0 \end{cases}$$

We add fictitious activities a_0 and a_{n+1} and adopt the conventions that $f_0 = 0$ and $s_{n+1} = \infty$, then *our goal* is: c[0, n+1].

Greedy solution

Theorem.

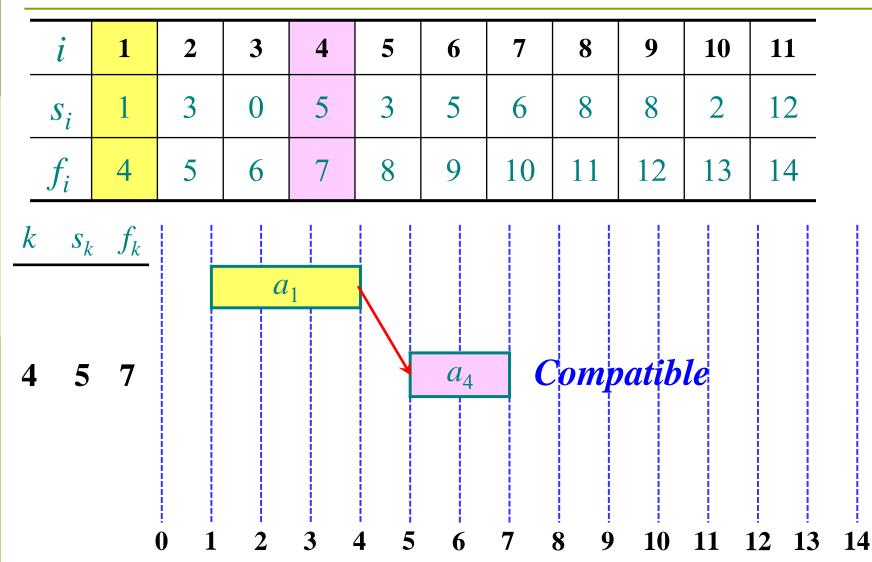
Consider any nonempty subproblem S_{ij} , and let a_m be the activity in S_{ij} with earliest finish time: $f_m = \min\{f_k: a_k \in S\}.$ Then

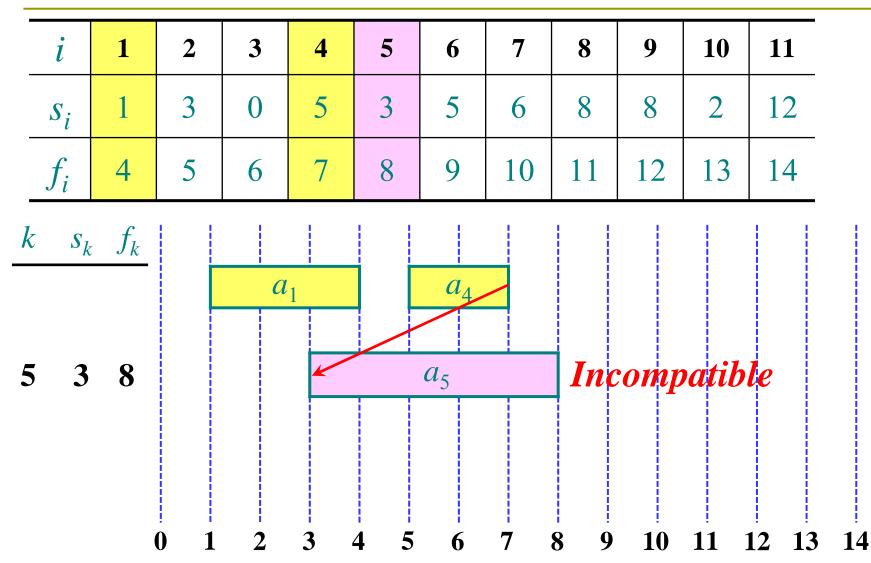
- Activity a_m is used in some maximum-size subset of mutually compatible activities of S_{ii} .
- The subproblem S_{im} is empty, so that choosing a_m leaves the subproblem S_{mj} as the only one that may be nonempty.

	i	1	2	3	4	5	6	7	8	9	10	11
-	s _i	1	3	0	5	3	5	6	8	8	2	12
	f_i	4	5	6	7	8	9	10	11	12	13	14
k	c s _k	f_k										
1	1	4		a	1							
			01	2	3	4 5	6	7	8 9	10	11	12 13

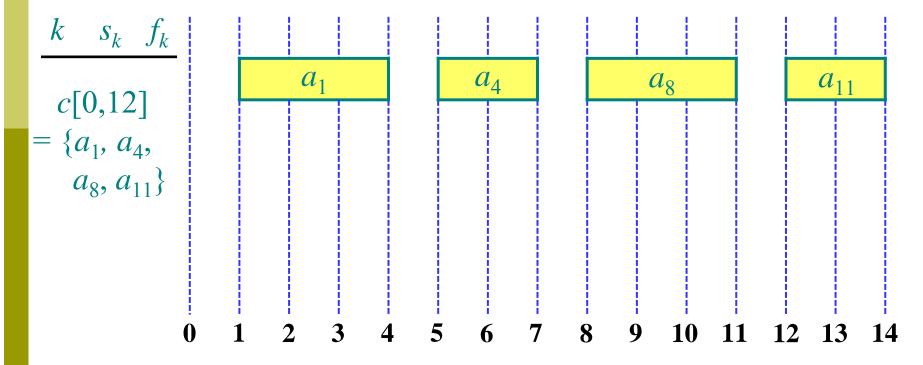
•	i	1	2	3	4	5	6	7	8	9	10	11	
	s _i	1	3	0	5	3	5	6	8	8	2	12	
	f_i	4	5	6	7	8	9	10	11	12	13	14	
k	$k s_k$	f_k											
2	2 3	5	0 1	2		a ₂	Inc 6	com <u></u> 7	atib	<i>le</i> 10	11	12 13	14

_													
	i	1	2	3	4	5	6	7	8	9	10	11	
	S _i	1	3	0	5	3	5	6	8	8	2	12	
-	f_i	4	5	6	7	8	9	10	11	12	13	14	
k	c s _k	f_k											
				a	1								
3	6 0	6			<i>a</i> ₃			Inco	mpa	tible	?		
			0 1	2	3	4 5	6	· 7	i i 89	10	י 11	12 13	;





i	1	2	3	4	5	6	7	8	9	10	11
S _i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14



Matrix-chain multiplication

m[i,j] denote the minimum number of scalar multiplications needed to compute the matrix $A_i \dots A_j$.

We obtain the *recursive* equations

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j. \end{cases}$$

Our goal is *m*[1, *n*].

Let c[i, j] be the number of activities in maximum-size subset of mutually compatible activities in S_{ii} .

Recursive definition of c[i, j] becomes

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = 0\\ \max_{i < k < j} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq 0 \end{cases}$$

We add fictitious activities a_0 and a_{n+1} and adopt the conventions that $f_0 = 0$ and $s_{n+1} = \infty$, then *our goal* is: c[0, n+1].

Elements of the greedy strategy

Optimal substructure

• An optimal solution to the problem contains within it optimal solutions to subproblems.

Greedy-choice property

• A globally optimal solution can be arrived at by making a locally optimal choice (a greedy choice at each step yields a globally optimal solution).

Steps of the greedy strategy

- Determine the *optimal substructure* of the problem.
- Develop a *recursive* solution.
- Prove that at any stage of the recursion, one of the optimal choices is the *greedy choice*. Thus, it is always safe to make the greedy choice.
- Show that all but one of the subproblems induced by having made the greedy choice are *empty*.
- Develop a *iterative* algorithm that implements the greedy strategy.

Knapsack problem

A thief robbing a store finds *n* items; the *i*th item is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers. He wants to take as valuable a load as possible, but he can carry at most *W* pounds in his knapsack for some integer *W*.

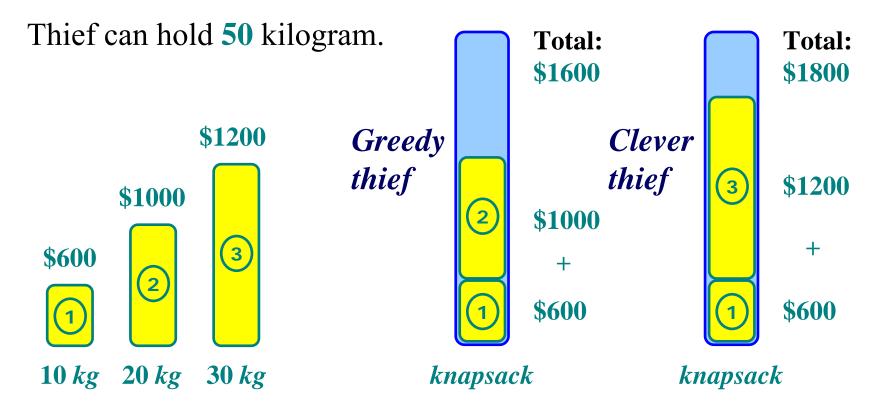
Which items should he take?

Knapsack problem

Item 1: **\$60** per kilogram. Item 2: **\$50** per kilogram. Item 3: **\$40** per kilogram.

Greedy strategy

- take item 1.
- take item 2.

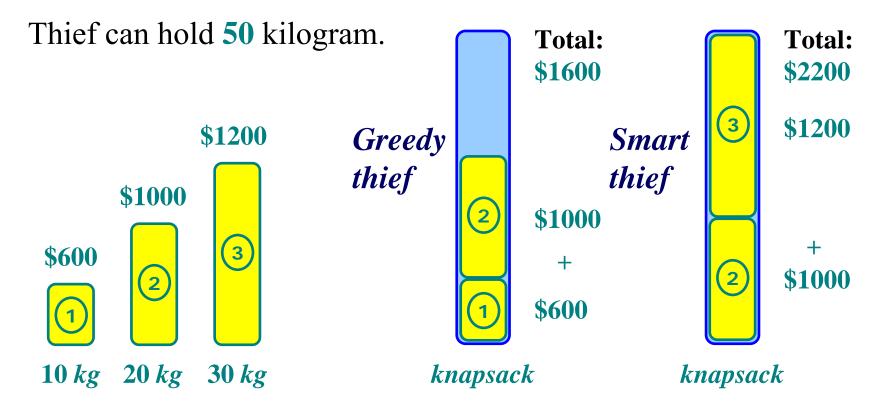


Knapsack problem

Item 1: **\$60** per kilogram. Item 2: **\$50** per kilogram. Item 3: **\$40** per kilogram.

Greedy strategy

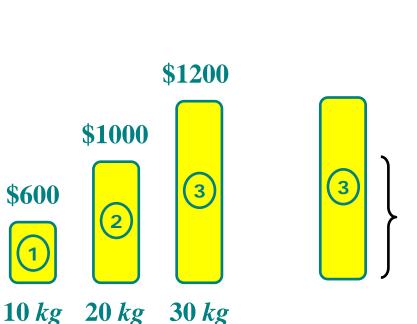
- take item 1.
- take item 2.

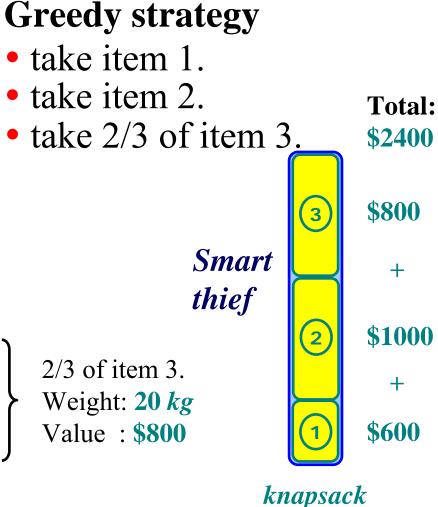


Fractional knapsack problem

Item 1: **\$60** per kilogram. Item 2: **\$50** per kilogram. Item 3: **\$40** per kilogram.

Thief can hold **50** kilogram.





Character-coding problem

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Suppose we have a 100,000-character data file.

• Fixed-length codeword

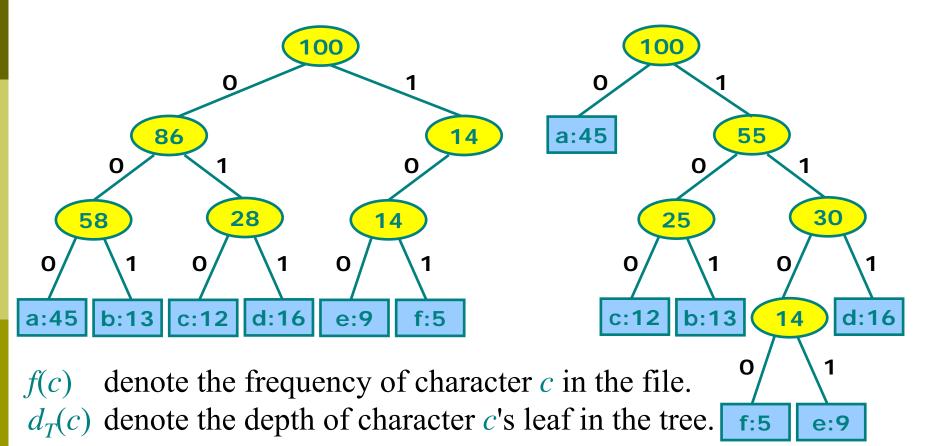
 $(45 \cdot 3 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 3 + 5 \cdot 3) \cdot 1,000 = 300,000$ bits

• Variable-length codeword

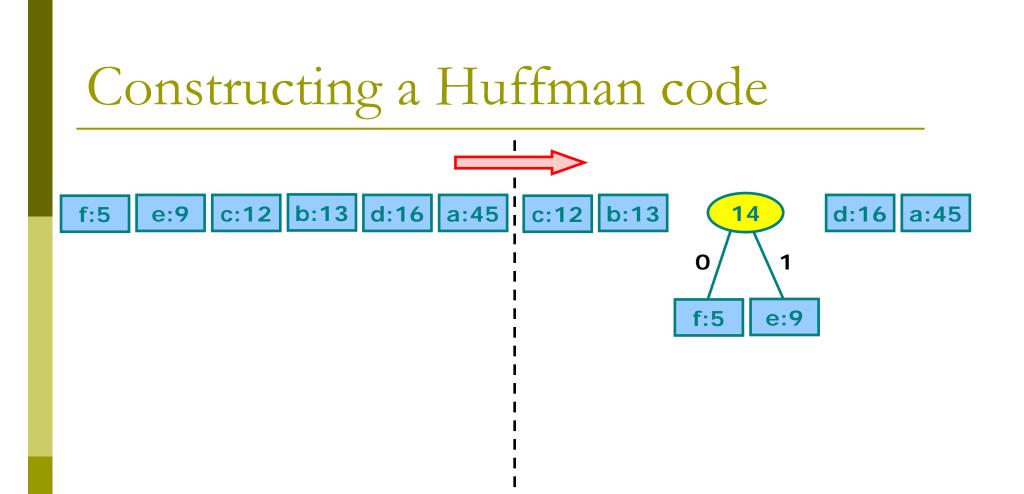
 $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224,000$ bits

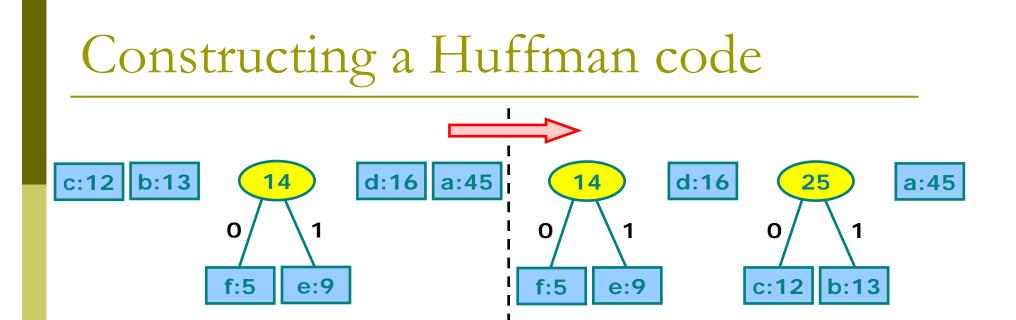
• Savings of approximately 25%. $(300,000 - 224,000) / 300,000 \approx 25\%$

Tree corresponding to the coding

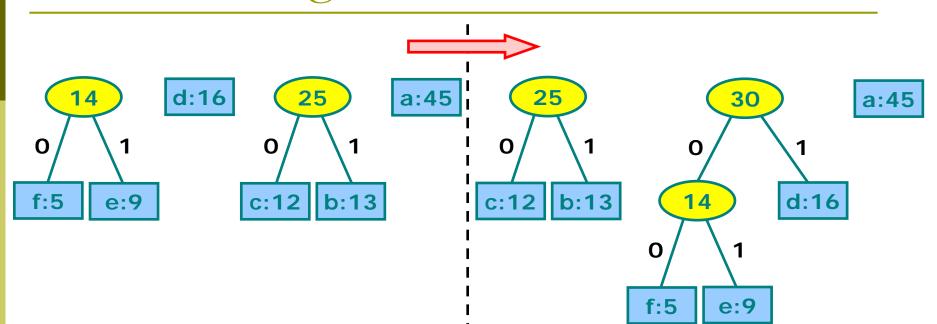


Cost of the tree *T*: $B(T) = \sum_{c \in C} f(c)d_T(c)$

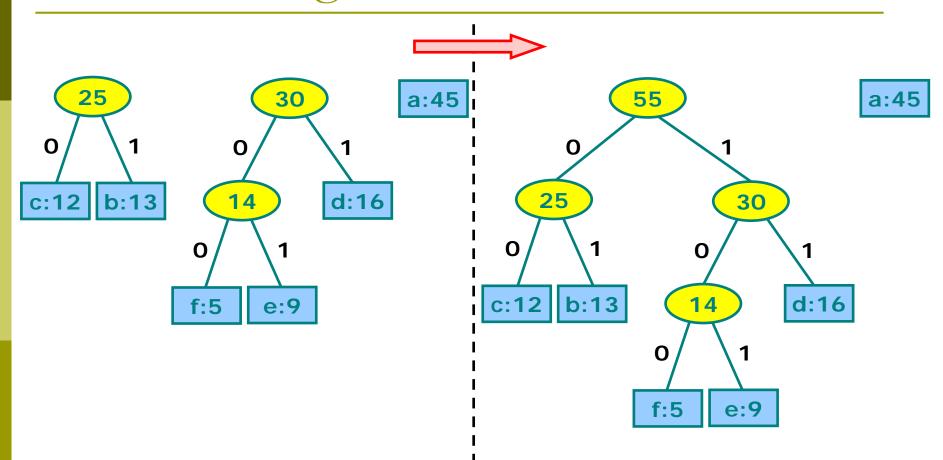




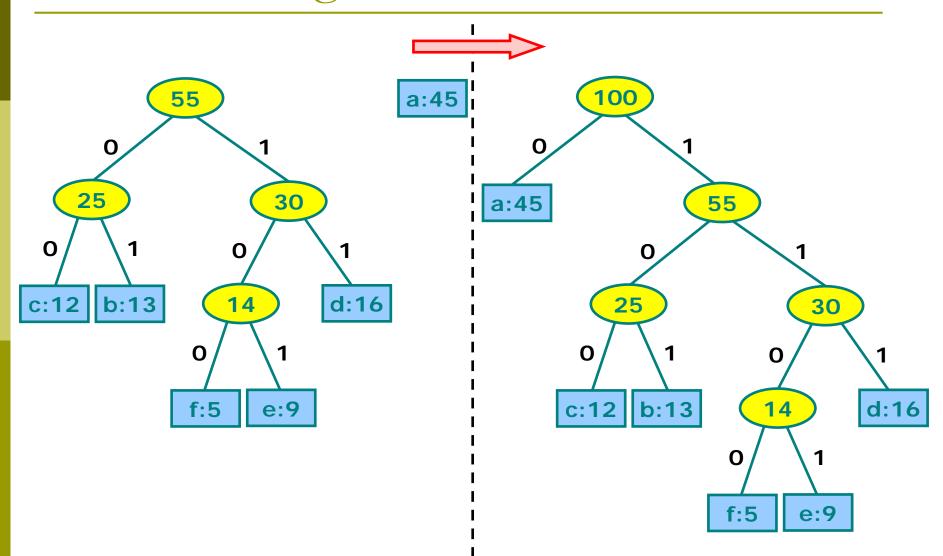
Constructing a Huffman code



Constructing a Huffman code



Constructing a Huffman code



Build Huffman codes

HUFFMAN(C)

- 1. $n \leftarrow |C|$
- 2. $Q \leftarrow C$
- 3. for $i \leftarrow 1$ to n 1
- 4. **do** allocate a new node z
- 5. $left[z] \leftarrow x \leftarrow \text{EXTRACT-MIN}(Q)$
- 6. $right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. INSERT(Q, z)
- 9. **return** EXTRACT-MIN(*Q*)

Running time

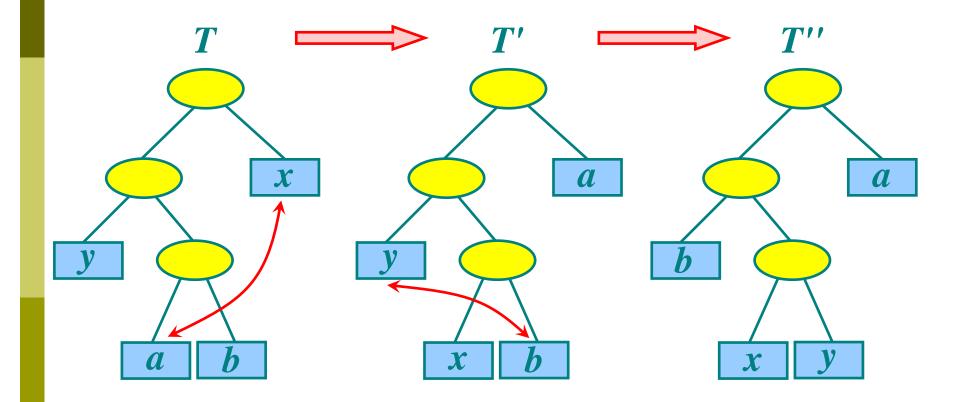
O(nlgn)

Correctness of Huffman's algorithm

Theorem.

Let *C* be an alphabet in which each character $c \in C$ has frequency f[c]. Let *x* and *y* be two characters in *C* having the lowest frequencies. Then there exists an *optimal prefix code* for *C* in which the code words for *x* and *y* have the *same length* and differ only in the last bit.

Correctness of Huffman's algorithm



Thinking and practice.

- Why don't greedy algorithms always work?
- What are differences between greedy algorithms and dynamic programming.
- *Try to solve knapsack problem by dynamic programming.*

Any question?

Xiaoqing Zheng Fundan University