
Data Structures and Algorithm

Xiaoqing Zheng
zhengxq@fudan.edu.cn

Activity-selection problem
Suppose we have a set S = {a1, a2, …, an} of n proposed
activities that wish to use a resource which can be used
by only one activity at a time.

1413121110987654fi

122886535031si

1110987654321i

Consider the following set S of activities

Activities ai and aj are compatible if the intervals [si, fi)
and [sj, fj) do not overlap.

Activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

Subset {a3, a9, a11}

It is not a maximal subset of
mutually compatible activities!

Activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

Subset {a1, a4, a8, a11}

It is a largest subset of mutually
compatible activities.

Activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

Subset {a2, a4, a9, a11}

It is a largest subset of mutually
compatible activities too.

Brute-force

Analysis
Checking = O(n) time per subset of S.
2n subset of S.
Worst-case running time = O(n2n)

= exponential time.

It is infeasible!

Activity-selection problem is to select a maximum-size
subset of mutually compatible activities.

Structure of Activity-selection problem
Sij = {ak ∈ S: fi ≤ sk < fk ≤ sj} denote the subset of
activities in S that can start after activity ai finishes and
finish before activity aj start.

Suppose now that an optimal solution Aij to Sij includes
activity ak. Then the solutions Aik to Sik and Akj to Skj
used within this optimal solution to Sij must be optimal
as well.

{ }ij ik k kjA A a A= ∪ ∪

Recursive solution
Let c[i, j] be the number of activities in maximum-size
subset of mutually compatible activities in Sij.

Recursive definition of c[i, j] becomes

0
max{ [,] [,] 1}
i k j

c i k c k j
< <

+ +c[i, j] =
if Sij = 0
if Sij ≠ 0

We add fictitious activities a0 and an+1 and adopt the
conventions that f0 = 0 and sn+1 = ∞, then our goal is:
c[0, n + 1].

Greedy solution
Theorem.
Consider any nonempty subproblem Sij, and let am be
the activity in Sij with earliest finish time:
fm = min{fk: ak ∈ S}.

Then
Activity am is used in some maximum-size subset of
mutually compatible activities of Sij.
The subproblem Sim is empty, so that choosing am
leaves the subproblem Smj as the only one that may
be nonempty.

Computing activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

k sk fk

1 1 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1

Computing activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

k sk fk

2 3 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1

a2 Incompatible

Computing activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

k sk fk

3 0 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1

a3 Incompatible

Computing activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

k sk fk

4 5 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1

a4 Compatible

Computing activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

k sk fk

5 3 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1 a4

a5 Incompatible

Computing activity-selection problem

1413121110987654fi

122886535031si

1110987654321i

k sk fk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a1 a4 a8 a11c[0,12]
= {a1, a4,

a8, a11}

Matrix-chain multiplication
denote the minimum number of scalar
multiplications needed to compute the matrix
Ai…Aj.

m[i,j]

We obtain the recursive equations

m[i,j] =
0 if i = j,

if i < j.1min{ [,] [1,] }i k ji k j
m i k m k j p p p−≤ <

+ + +

Our goal is m[1, n].

Activity-selection problem
Let c[i, j] be the number of activities in maximum-size
subset of mutually compatible activities in Sij.

Recursive definition of c[i, j] becomes

0
max{ [,] [,] 1}
i k j

c i k c k j
< <

+ +c[i, j] =
if Sij = 0
if Sij ≠ 0

We add fictitious activities a0 and an+1 and adopt the
conventions that f0 = 0 and sn+1 = ∞, then our goal is:
c[0, n + 1].

Elements of the greedy strategy
Optimal substructure

An optimal solution to the problem contains within it
optimal solutions to subproblems.

Greedy-choice property
A globally optimal solution can be arrived at by
making a locally optimal choice (a greedy choice at
each step yields a globally optimal solution).

Steps of the greedy strategy
Determine the optimal substructure of the problem.
Develop a recursive solution.
Prove that at any stage of the recursion, one of the
optimal choices is the greedy choice. Thus, it is
always safe to make the greedy choice.
Show that all but one of the subproblems induced by
having made the greedy choice are empty.
Develop a iterative algorithm that implements the
greedy strategy.

Knapsack problem
A thief robbing a store finds n items; the ith item is
worth vi dollars and weighs wi pounds, where vi and wi
are integers. He wants to take as valuable a load as
possible, but he can carry at most W pounds in his
knapsack for some integer W.

Which items should he take?

Knapsack problem

10 kg 20 kg 30 kg

1

2

3$600

$1000

$1200

Item 1: $60 per kilogram.
Item 2: $50 per kilogram.
Item 3: $40 per kilogram.

Thief can hold 50 kilogram.

knapsack

1

Greedy strategy
take item 1.
take item 2.

2

$600

$1000
+

Total:
$1600

Greedy
thief

knapsack

1 $600

$1200

+

Total:
$1800

Clever
thief 3

Knapsack problem

10 kg 20 kg 30 kg

1

2

3$600

$1000

$1200

Item 1: $60 per kilogram.
Item 2: $50 per kilogram.
Item 3: $40 per kilogram.

Thief can hold 50 kilogram.

knapsack

1

Greedy strategy
take item 1.
take item 2.

2

$600

$1000
+

Total:
$1600

knapsack

$1000

$1200

+

Total:
$2200

Greedy
thief

Smart
thief

3

2

Fractional knapsack problem

10 kg 20 kg 30 kg

1

2

3$600

$1000

$1200

Item 1: $60 per kilogram.
Item 2: $50 per kilogram.
Item 3: $40 per kilogram.

Thief can hold 50 kilogram.

Greedy strategy
take item 1.
take item 2.

knapsack

$600

$1000

+

Total:
$2400

Smart
thief

2

take 2/3 of item 3.

1

3

+

$800

3 2/3 of item 3.
Weight: 20 kg
Value : $800

Character-coding problem

110011011111001010Variable-length codeword

101100011010001000Fixed-length codeword

5916121345Frequency (in thousands)

fedcba

Fixed-length codeword
(45 · 3 + 13 · 3 + 12 · 3 + 16 · 3 + 9 · 3 + 5 · 3) · 1,000 = 300,000 bits

Suppose we have a 100,000-character data file.

Variable-length codeword
(45 · 1 + 13 · 3 + 12 · 3 + 16 · 3 + 9 · 4 + 5 · 4) · 1,000 = 224,000 bits

Savings of approximately 25%.
(300,000 − 224,000) / 300,000 ≈ 25%

Tree corresponding to the coding
100

86

1458 28

a:45

14

b:13 c:12 d:16 e:9 f:5

100

55

25 30

c:12 b:13 d:1614

f:5 e:9

a:45

0 1 0 1

0 1 0 0 1

0 1 0 1 0 1 0 1 0 1

0 1f(c) denote the frequency of character c in the file.
dT(c) denote the depth of character c's leaf in the tree.
Cost of the tree T: () () ()T

c C
B T f c d c

∈

=∑

Constructing a Huffman code

f:5 e:9 c:12 b:13 d:16 a:45 c:12 b:13

f:5 e:9

d:16 a:4514

0 1

Constructing a Huffman code

c:12 b:13

f:5 e:9

d:16 a:4514

0 1

f:5 e:9

a:4514

0 1

d:16

c:12 b:13

25

0 1

Constructing a Huffman code

f:5 e:9

a:4514

0 1

d:16

c:12 b:13

25

0 1 0 1

f:5 e:9

a:45

14

0 1

d:16c:12 b:13

25

0 1

30

Constructing a Huffman code

0 1

f:5 e:9

a:45

14

0 1

d:16c:12 b:13

25

0 1

30

0 1

0 1

f:5 e:9

a:45

14

0 1

d:16c:12 b:13

25

0 1

30

55

Constructing a Huffman code

0 1

0 1

f:5 e:9

a:45

14

0 1

d:16c:12 b:13

25

0 1

30

55

0 1

0 1

0 1

f:5 e:9

a:45

14

0 1

d:16c:12 b:13

25

0 1

30

55

100

Build Huffman codes
HUFFMAN(C)
1. n ← |C|
2. Q ← C
3. for i ← 1 to n − 1
4. do allocate a new node z
5. left[z] ← x ← EXTRACT-MIN(Q)
6. right[z] ← y ← EXTRACT-MIN(Q)
7. f [z] ← f [x] + f [y]
8. INSERT(Q, z)
9. return EXTRACT-MIN(Q)

Running time
O(nlgn)

Correctness of Huffman's algorithm
Theorem.
Let C be an alphabet in which each character c ∈ C has
frequency f [c]. Let x and y be two characters in C
having the lowest frequencies. Then there exists an
optimal prefix code for C in which the code words for
x and y have the same length and differ only in the
last bit.

Correctness of Huffman's algorithm

a b

y

x

T

x b

y

a

T'

x y

b

a

T''

Thinking and practice.

What are differences between greedy algorithms
and dynamic programming.

Why don't greedy algorithms always work?

Try to solve knapsack problem by dynamic
programming.

Any question?
Xiaoqing Zheng

Fundan University

