Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Activity-selection problem

Suppose we have a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n proposed activities that wish to use a resource which can be used by only one activity at a time.

Consider the following set S of activities

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14

Activities a_{i} and a_{j} are compatible if the intervals $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ do not overlap.

Activity-selection problem

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14

Subset $\left\{a_{3}, a_{9}, a_{11}\right\}$

It is not a maximal subset of mutually compatible activities!

Activity-selection problem

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14

Subset $\left\{a_{1}, a_{4}, a_{8}, a_{11}\right\}$

It is a largest subset of mutually compatible activities.

Activity-selection problem

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14

Subset $\left\{a_{2}, a_{4}, a_{9}, a_{11}\right\}$

It is a largest subset of mutually compatible activities too.

Brute-force

Activity-selection problem is to select a maximum-size subset of mutually compatible activities.

Analysis

- Checking $=O(n)$ time per subset of S.
- 2^{n} subset of S.
- Worst-case running time $=O\left(n 2^{n}\right)$
$=$ exponential time.
It is infeasible!

Structure of Activity-selection problem

$S_{i j}=\left\{a_{k} \in S: f_{i} \leq s_{k}<f_{k} \leq s_{j}\right\}$ denote the subset of activities in S that can start after activity a_{i} finishes and finish before activity a_{j} start.

Suppose now that an optimal solution $A_{i j}$ to $S_{i j}$ includes activity a_{k}. Then the solutions $A_{i k}$ to $S_{i k}$ and $A_{k j}$ to $S_{k j}$ used within this optimal solution to $S_{i j}$ must be optimal as well.

$$
A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}
$$

Recursive solution

Let $c[i, j]$ be the number of activities in maximum-size subset of mutually compatible activities in $S_{i j}$.
Recursive definition of $c[i, j]$ becomes

$$
c[i, j]= \begin{cases}0 & \text { if } S_{i j}=0 \\ \max _{i<k<j}\{c[i, k]+c[k, j]+1\} & \text { if } S_{i j} \neq 0\end{cases}
$$

We add fictitious activities a_{0} and a_{n+1} and adopt the conventions that $f_{0}=0$ and $s_{n+1}=\infty$, then our goal is: $c[0, n+1]$.

Greedy solution

Theorem.

Consider any nonempty subproblem $S_{i j}$, and let a_{m} be the activity in $S_{i j}$ with earliest finish time:

$$
f_{m}=\min \left\{f_{k}: a_{k} \in S\right\} .
$$

Then

- Activity a_{m} is used in some maximum-size subset of mutually compatible activities of $S_{i j}$.
- The subproblem $S_{i m}$ is empty, so that choosing a_{m} leaves the subproblem $S_{m j}$ as the only one that may be nonempty.

Computing activity-selection problem

Computing activity-selection problem

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14
$k s_{k}$	f_{k}										

Computing activity-selection problem

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14
k	s_{k}	f_{k}									

Computing activity-selection problem

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14
k	s_{k}	f_{k}									

Computing activity-selection problem

Computing activity-selection problem

i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	
S_{i}	1	3	0	5	3	5	6	8	8	2	12	
f_{i}	4	5	6	7	8	9	10	11	12	13	14	
$k s_{k} f_{k}$												

Matrix-chain multiplication

$m[i, j]$ denote the minimum number of scalar multiplications needed to compute the matrix $A_{i} \ldots A_{j}$.

We obtain the recursive equations

$$
m[i, j]= \begin{cases}0 & \text { if } i=j, \\ \min \left\{\left\langle k[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}\right. & \text { if } i<\mathrm{j} .\end{cases}
$$

Our goal is $m[1, n]$.

Activity-selection problem

Let $c[i, j]$ be the number of activities in maximum-size subset of mutually compatible activities in $S_{i j}$.
Recursive definition of $c[i, j]$ becomes

$$
c[i, j]= \begin{cases}0 & \text { if } S_{i j}=0 \\ \max _{i<k<j}\{c[i, k]+c[k, j]+1\} & \text { if } S_{i j} \neq 0\end{cases}
$$

We add fictitious activities a_{0} and a_{n+1} and adopt the conventions that $f_{0}=0$ and $s_{n+1}=\infty$, then our goal is: $c[0, n+1]$.

Elements of the greedy strategy

Optimal substructure

- An optimal solution to the problem contains within it optimal solutions to subproblems.

Greedy-choice property

- A globally optimal solution can be arrived at by making a locally optimal choice (a greedy choice at each step yields a globally optimal solution).

Steps of the greedy strategy

- Determine the optimal substructure of the problem.
- Develop a recursive solution.
- Prove that at any stage of the recursion, one of the optimal choices is the greedy choice. Thus, it is always safe to make the greedy choice.
- Show that all but one of the subproblems induced by having made the greedy choice are empty.
- Develop a iterative algorithm that implements the greedy strategy.

Knapsack problem

A thief robbing a store finds n items; the i th item is worth v_{i} dollars and weighs w_{i} pounds, where v_{i} and w_{i} are integers. He wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack for some integer W.

Which items should he take?

Knapsack problem

Item 1: \$60 per kilogram. Item 2: \$50 per kilogram. Item 3: \$40 per kilogram.

Thief can hold 50 kilogram.

Greedy strategy

- take item 1.
- take item 2.

Knapsack problem

Item 1: \$60 per kilogram. Item 2: \$50 per kilogram. Item 3: \$40 per kilogram.

Thief can hold 50 kilogram.

Greedy strategy

- take item 1.
- take item 2.

Fractional knapsack problem

Item 1: \$60 per kilogram. Item 2: \$50 per kilogram. Item 3: \$40 per kilogram.

Thief can hold 50 kilogram.

Greedy strategy

- take item 1.
- take item 2.
- take $2 / 3$ of item 3 .

knapsack

$2 / 3$ of item 3 . Weight: 20 kg Value : \$800

Character-coding problem

	a	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Suppose we have a 100,000 -character data file.

- Fixed-length codeword
$(45 \cdot 3+13 \cdot 3+12 \cdot 3+16 \cdot 3+9 \cdot 3+5 \cdot 3) \cdot 1,000=300,000$ bits
- Variable-length codeword
$(45 \cdot 1+13 \cdot 3+12 \cdot 3+16 \cdot 3+9 \cdot 4+5 \cdot 4) \cdot 1,000=224,000$ bits
- Savings of approximately $\mathbf{2 5 \%}$.
(300,000-224,000) / 300,000 $\approx 25 \%$

Tree corresponding to the coding

$f(c)$ denote the frequency of character c in the file.
$d_{T}(c)$ denote the depth of character c 's leaf in the tree. f:5 e:9
Cost of the tree $T: \quad B(T)=\sum_{c \in C} f(c) d_{T}(c)$

Constructing a Huffman code

Build Huffman codes

HUFFMAN (C)

1. $n \leftarrow|C|$
2. $Q \leftarrow C$
3. for $i \leftarrow 1$ to $n-1$
4. do allocate a new node z
5. left $[z] \leftarrow x \leftarrow \operatorname{EXTRACT}-\mathrm{MIN}(Q)$
6. \quad right $[z] \leftarrow y \leftarrow$ EXTRACT-MIN (Q)
7. $f[z] \leftarrow f[x]+f[y]$
8. $\operatorname{INSERT}(Q, z)$
9. return EXTRACT-MIN(Q)

Running time
O (nlgn)

Correctness of Huffman's algorithm

Theorem.

Let C be an alphabet in which each character $c \in C$ has frequency $f[c]$. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the code words for x and y have the same length and differ only in the last bit.

Correctness of Huffman's algorithm

Thinking and practice.

- Why don't greedy algorithms always work?
- What are differences between greedy algorithms and dynamic programming.
- Try to solve knapsack problem by dynamic programming.

Any question?

Xiaoqing Zheng
Fundan University

