
Data Structures and Algorithm

Xiaoqing Zheng
zhengxq@fudan.edu.cn

MULTIPOP

6
15

8
5

3
12

S

top[S] = 6

MULTIPOP(S, x)
1. while not STACK-EMPTY(S)

and k ≠ 0
2. do POP(S)
3. k ← k − 1

MULTIPOP(S, 4)top[S] = 2

Analysis of MULTIPOP

The worst-case cost of a MULTIPOP operation
is O(n)
The worst-case time of any stack operation is
therefore O(n)

A sequence of n PUSH, POP, and MULTIPOP
operations on an initially empty stack.

A sequence of n operations costs is O(n2)

This bound is not tight!

Amortized analysis
An amortized analysis is any strategy for analyzing a
sequence of operations to show that the average cost
per operation is small, even though a single operation
within the sequence might be expensive.
Even though we're taking averages, however,
probability is not involved!
An amortized analysis guarantees the average
performance of each operation in the worst case.

Types of amortized analyses
Three common amortization arguments:

Aggregate method
Accounting method
Potential method

The aggregate method, though simple, lacks the
precision of the other two methods. In particular, the
accounting and potential methods allow a specific
amortized cost to be allocated to each operation.

Aggregate analysis
We show that for all n, a sequence of n operation
takes worst-case time T(n) in total.
Hence, the average cost, or amortized cost, per
operation is T(n)/n

MULTIPOP (aggregate method)
Each object can be popped at most once for each
time it is pushed. Therefore, the number of times
that POP can be called on a nonempty stack,
including calls within MULTIPOP, is at most the
number of PUSH operations, which is at most n.

Any sequence of n PUSH, POP, and MULTIPOP
operations takes a total of O(n) time. The average
cost of an operation is T(n)/n = O(1)

8-bit binary counter

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0

0
1
2
3
4
5
6
7
8

A[7]A[6]A[5]A[4] A[3] A[2]A[1] A[0]

0
1
3
4
7
8

10
11
15

Counter
Value

Total
cost

Incrementing a binary counter
An array A[0 … k − 1] of bit, where length[A] = k, as
the counter.

1

0
[] 2k i

i
x A i−

=
= ⋅∑

INCREMENT(A)
1. i ← 0
2. while i < length[A] and A[i] = 1
3. do A[i] ← 0
4. i = i + 1
5. if i < length[A]
6. then A[i] ← 1

Binary counter (aggregate method)
For i = 0, 1 …, , bit A[i] flips times in a
sequence of n INCREMENT operation on an initially
zero counter.

lg n⎢ ⎥⎣ ⎦ / 2in⎢ ⎥⎣ ⎦

The total number of flips in the sequence is thus
lg

0 0

1
2 2

n

i i
i i

n n
⎢ ⎥ ∞⎣ ⎦

= =

⎢ ⎥ <⎢ ⎥⎣ ⎦
∑ ∑

2n=
= O(n)

The amortized cost per operation is
O(n)/n = O(1)

MULTIPOP (accounting method)

$ 1

S

top[S] = 1

PUSH
POP
MULTIPOP

Actual costs
1,
1,
min(k, s).

PUSH
POP
MULTIPOP

Amortized costs
2,
0,
0.

$ 1

PUSH

MULTIPOP (accounting method)

$ 1
$ 1

$ 1

S

top[S] = 3

PUSH
POP
MULTIPOP

Actual costs
1,
1,
min(k, s).

PUSH
POP
MULTIPOP

Amortized costs
2,
0,
0.

$ 1 + $ 1 + $ 1

top[S] = 2

PUSH
PUSH

MULTIPOP (accounting method)

$ 1
$ 1

$ 1

S

top[S] = 2

PUSH
POP
MULTIPOP

Actual costs
1,
1,
min(k, s).

PUSH
POP
MULTIPOP

Amortized costs
2,
0,
0.

$ 1 + $ 1 + $ 1

top[S] = 3

POP

+ $ 1

MULTIPOP (accounting method)

$ 1
$ 1

S

top[S] = 2

PUSH
POP
MULTIPOP

Actual costs
1,
1,
min(k, s).

PUSH
POP
MULTIPOP

Amortized costs
2,
0,
0.

$ 1 + $ 1 + $ 1top[S] = 0

MULTIPOP 2

+ $ 1 + $ 1 + $ 1

Accounting method
We assign differing charges to different operations,
with some operations charged more or less than they
actually cost.
The amount we charge an operation is called its
amortized cost.
When an operation’s amortized cost exceeds its actual
cost, the difference is assigned to specific objects in
the data structure as credit.

Accounting method
We denote the actual cost of the ith operation by ci
and the amortized cost of the ith operation by ,
we require

ic

1 1

n n

i i
i i

c c
= =

≥∑ ∑

Why?

Binary counter (accounting method)

Set a bit to 1
Flip the bit back to 0

Amortized costs
2,
0.

Potential method
For each i = 1, 2, …, n, we let ci be the actual cost
of the ith operation and Di be the data structure that
results after applying the ith operation to data
structure Di−1.
A potential function Φ maps each data structure Di
to a real number Φ(Di), which is the potential
associated with data structure Di.
A amortized cost of ith operation with respect to
potential function is Φ defined by

1() ().i i i ic c D D −= +Φ −Φ

ic

Potential method
The total amortized cost of the n operation is

1
1 1

(() ())
n n

i i i i
i i

c c D D −
= =

= +Φ −Φ∑ ∑

0
1

() ()
n

i n
i

c D D
=

= +Φ −Φ∑
Define a potential function Φ so that Φ(Dn) ≥Φ(D0),
then the total amortized cost is an upper bound
on the total actual cost .

1

n
ii

c
=∑

1

n
ii

c
=∑

MULTIPOP (potential method)
We define the potential function Φ on a stack to be
the number of objects in the stack.

PUSH operation
1() () (1) 1i iD D s s−Φ −Φ = + − =

1() () 1 1 2i i i ic c D D −= +Φ −Φ = + =

MULTIPOP(S, k) operation and k' = min(k, s)
1() ()i iD D k− ′Φ −Φ = −

1() () 0i i i ic c D D k k− ′= +Φ −Φ = − =

POP operation and k' = min(1, s)
1() ()i iD D k− ′Φ −Φ = −

1() () 0i i i ic c D D k k− ′= +Φ −Φ = − =

Binary counter (potential method)
We define the potential of counter after the ith
INCREMENT operation to be bi, the number of 1's
in the counter after the ith operation.
Suppose that the ith INCREMENT operation reset
ti bit.

1 1 1() () (1)i i i i iD D b t b− − −Φ −Φ = − + −
1 it= −

1() ()i i i ic c D D −= +Φ −Φ

(1) (1)i it t= + + −
2=

8-bit binary counter

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0

0
1
2
3
4
5
6
7
8

A[7]A[6]A[5]A[4] A[3] A[2]A[1] A[0]

0
1
3
4
7
8

10
11
15

Counter
Value

Total
cost

1() ()i iD D −Φ −Φ

1 1(1)i i ib t b− −= − + −

= (2 − 1 + 1) − 2
= 0

1() ()i i i ic c D D −= +Φ −Φ

= 2 + 0
= 2

8-bit binary counter

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0

0
1
2
3
4
5
6
7
8

A[7]A[6]A[5]A[4] A[3] A[2]A[1] A[0]

0
1
3
4
7
8

10
11
15

Counter
Value

Total
cost

1() ()i iD D −Φ −Φ

1 1(1)i i ib t b− −= − + −

= (3 − 3 + 1) − 3
= −2

1() ()i i i ic c D D −= +Φ −Φ

= 4 − 2
= 2

Binary counter (potential method)

0
1 1

() ()
n n

i i n
i i

c c D D
= =

= +Φ −Φ∑ ∑

0
1 1

() ()
n n

i i n
i i

c c D D
= =

= −Φ +Φ∑ ∑

0
1

2
n

n
i

b b
=

= − +∑

02 nn b b= − +

()O n=

Hash tables by chaining
Expected time to search for a record with a given key

(1)αΘ +

apply hash
function and
access slot

search
the list

Expected search time = Θ(1) if = O(1),
or equivalently, if n = O(m).

α

/n mα = = average number of keys per slot.

Hash tables by open-addressed
Theorem. Given an open-addressed hash table with
load factor , the expected number of
probes in an unsuccessful search is at most .

/ 1n mα = <
1/(1)α−

Theorem. Given an open-addressed hash table with
load factor , the expected number of
probes in an successful search is at most .

/ 1n mα = <

1 1ln
1α α−

How large should a hash table be?
Goal: Make the table as small as possible, but large
enough so that it won’t overflow (or otherwise
become inefficient).
Problem: What if we don’t know the proper size in
advance?
Solution: Dynamic tables.
IDEA: Whenever the table overflows, "grow" it by
allocating a new, larger table. Move all items from the
old table into the new one, and free the storage for the
old table.

Example of a dynamic table

11. INSERT

Example of a dynamic table (cont.)

11. INSERT
2. INSERT Overflow

Example of a dynamic table (cont.)

11. INSERT
2. INSERT Overflow

Example of a dynamic table (cont.)

1
2

1. INSERT
2. INSERT

Example of a dynamic table (cont.)

1
2

1. INSERT
2. INSERT
3. INSERT Overflow

Example of a dynamic table (cont.)

1. INSERT
2. INSERT
3. INSERT Overflow

1
2

Example of a dynamic table (cont.)

1. INSERT
2. INSERT
3. INSERT

1
2
3

Example of a dynamic table (cont.)

1. INSERT
2. INSERT
3. INSERT

1
2
3
44. INSERT

Example of a dynamic table (cont.)

1. INSERT
2. INSERT
3. INSERT

1
2
3
44. INSERT

5. INSERT Overflow

Example of a dynamic table (cont.)

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT Overflow

1
2
3
4

Example of a dynamic table (cont.)

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

1
2
3
4
5

Example of a dynamic table (cont.)

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

1
2
3
4
5
6
7

6. INSERT
7. INSERT

Worst-case analysis
Consider a sequence of n insertions. The worst-case
time to execute one insertion is Θ(n). Therefore, the
worst-case time for n insertions is n · Θ(n) = Θ(n2).

This bound is not tight! In fact, the worst-case cost
for n insertions is only Θ(n).

Let's see why.

Tighter analysis
Let ci = the cost of the ith insertion

i if i – 1 is an exact power of 2,

1 otherwise.
=

i

sizei

ci

1 2 3 4 5 6 7 8 9 10

1 2 4 4 8 8 8 8 16 16

1 2 3 1 5 1 1 1 9 1

Tighter analysis (cont.)
Let ci = the cost of the ith insertion

i if i – 1 is an exact power of 2,

1 otherwise.
=

i

sizei

ci

1 2 3 4 5 6 7 8 9 10

1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1

1 2 4 8

Tighter analysis (aggregate method)
The total cost of n TABLE-INSERT operations is
therefore

lg

1 0
2

nn
j

i
i j

c n
⎢ ⎥⎣ ⎦

= =

≤ +∑ ∑
2n n≤ +

3n=

()n= Θ

Thus, the average cost of each dynamic-table operation
is Θ(n)/n = Θ(1).

Accounting analysis of dynamic tables
Charge an amortized cost of = $3 for the ith insertion.ic

$1 pays for the immediate insertion.
$2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent
item, and $1 pays to move an old item.

Accounting analysis of dynamic tables

$ 0
$ 0
$ 2
$ 2

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT Overflow

Accounting analysis of dynamic tables

$ 0
$ 0
$ 0
$ 0

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

Accounting analysis of dynamic tables

$ 0
$ 0
$ 0
$ 0
$ 2

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

Accounting analysis of dynamic tables

$ 0
$ 0
$ 0
$ 0
$ 2
$ 2
$ 2

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT
6. INSERT
7. INSERT

Dynamic table (potential method)
We start by defining a potential function Φ that is 0
immediately after an expansion but builds to the table
size by the time the table is full. The function

Φ(T) = 2 · num[T] − size[T]

numi denote the number of items stored in the table
after the ith operation
sizei denote the total size of the table after the ith
operation
Φi denote the potential after the ith operation

Dynamic table (potential method)
If the ith TABLE-INSERT operation does not
trigger an expansion, the amortized cost is

1i i i ic c −= +Φ −Φ

1 11 (2) (2)i i i inum size num size− −= + ⋅ − − ⋅ −
1 (2) (2 (1))i i i inum size num size= + ⋅ − − ⋅ − −
3=

If the ith TABLE-INSERT operation triggers an
expansion, the amortized cost is

1i i i ic c −= +Φ −Φ

1 1(2) (2)i i i i inum num size num size− −= + ⋅ − − ⋅ −
(2 2 (1)) (2 (1) (1))i i i i inum num num num num= + ⋅ − ⋅ − − ⋅ − − −

3=

Table expansion and contraction
Table contraction is analogous to table expansion:
when the number of items in the table drops too low,
we allocate a new, smaller table and then copy the
items form the old table into the new one.

A natural strategy for expansion and contraction is to
double the table size when an item is inserted into a
full table and halve the size when a deletion would
cause the table to become less than half full.

This strategy cause the amortized cost
of an operation to be quite large.

Problem of natural strategy
We perform the following sequence.
I, D, D, I, I, D, D, I, I, …

1
2
3
4

1
2
3
4
5Expansion

1
2
3
4

1
2
3

1
2
3
4

INSERT DELETE DELETE INSERT INSERT DELETE DELETE

1
2
3
4
5

1
2
3
4

Contraction

Expansion

Contraction

Improved strategy
Double the table size when an item is inserted into a
full table
Halve the table size when a deletion causes the table
to become less than 1/4 full

2 · num[T] − size[T] if α(T) ≥ 1/2
Φ(T) =

size[T] / 2− num[T] if α(T) < 1/2

Potential function

Any question?
Xiaoqing Zheng

Fundan University

