
Optimal Multiperiod Portfolio Policies
Author(s): Jan Mossin
Source: The Journal of Business, Vol. 41, No. 2 (Apr., 1968), pp. 215-229
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/2351447 .

Accessed: 11/09/2013 02:33

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to The
Journal of Business.

http://www.jstor.org 

This content downloaded from 202.115.118.13 on Wed, 11 Sep 2013 02:33:00 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/stable/2351447?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


OPTIMAL MULTIPERIOD PORTFOLIO POLICIES* 

JAN MOSSINt 

I. INTRODUCTION 

A. BACKGROUND 

Most of the work in portfolio theory to 
date' has taken what may be called a 
mean variability approach-that is, the 
investor is thought of as choosing among 
alternative portfolios on the basis of the 
mean and variance of the portfolios' rate 
of return. A recent contribution by Ar- 
row prepares the ground for a consider- 
ably more general approach.2 

Although there would seem to be an 
obvious need for extending the one-peri- 
od analysis to problems of portfolio man- 
agement over several periods, Tobin 
appears to be one of the first to make an 
attempt in this direction.3 However, as 
will be demonstrated in this article, the 
validity of portions of this analysis ap- 
pears to be doubtful. The explanation is 
partly to be found in the fact that a for- 

mutation of the decision problem (even 
in the one-period case) in terms of port- 
folio rate of return tends to obscure an 
important aspect of the problem, namely, 
the role of the absolute size of the port- 
folio. In a multiperiod theory the devel- 
opment through time of total wealth be- 
comes crucial and must be taken into 
account. A formulation neglecting this 
can easily become misleading. 

In order to bring out and resolve the 
problems connected with a rate-of-return 
formulation, it is therefore necessary to 
start with an analysis of the one-period 
problem. Thus prepared, the extension to 
multiperiod problems can be accom- 
plished, essentially by means of a dy- 
namic programing approach. 

B. RISK-AVERSION FUNCTIONS 

The Pratt-Arrow measures of risk 
aversion are employed at various points 
in the analysis. They are absolute risk 
aversion, 

Ra( Y) U" ( Y) 

relative risk aversion, 

Rr( Y) = U( Y) Y 
U'(Y)I 

where U is a utility function representing 
preferences over probability distribu- 
tions for wealth Y. Discussions of the 
significance of these functions are found 
in Arrow and Pratt.4 

* An earlier version appeared as CORE Discus- 
sion Paper No. 6702. It was written during the au- 
thor's stay as visitor to the Center for Operations 
Research and Econometrics, University of Louvain, 
Louvain, Belgium. 

t Assistant professor, Norwegian School of Eco- 
nomics and Business Administration, Bergen, Nor- 
way. 

IJ. Tobin, "Liquidity Preference as Behavior 
towards Risk," Review of Economic Studies (1957- 
58), pp. 65-86; H. Markowitz, Portfolio Selection 
(New York: Wiley, 1959); J. Tobin, "The Theory of 
Portfolio Selection," in F. H. Hahn and F. P. R. 
Brechling (eds.), The Theory of Interest Rates (Lon- 
don: Macmillan, 1965), J. Mossin, "Equilibrium in 
a Capital Asset Market," Econometrica (1966), pp. 
768-83. 

2K. J. Arrow, Aspects of the Theory of Risk- 
Bearing (Yrj6 Jahnsson Lectures [Helsinki: The 
Yrj6 Jahnsson Foundation, 1965]). 

3 Tobin, "Theory of Portfolio Selection." 

4 Arrow, op. cit.; J. Pratt, "Risk Aversion in the 
Small and in the Large," Econometrica (1964), pp. 
122-36. 
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216 THE JOURNAL OF BUSINESS 

II. SINGLE-PERIOD MODELS 

By a single-period model is meant a 
theory of the following structure: The 
investor makes his portfolio decision at 
the beginning of a period and then waits 
until the end of the period when the rate 
of return on his portfolio materializes. 
He cannot make any intermediate 
changes in the composition of his port- 
folio. The investor makes his decision 
with the objective of maximizing ex- 
pected utility of wealth at the end of the 
period (final wealth). 

A. THE SIMPLEST CASE 

In the simplest possible case there are 
only two assets, one of which yields a 
random rate of return (an interest rate) 
of X per dollar invested, while the other 
asset (call it "cash") gives a certain rate 
of return of zero. This model has been 
analyzed in some detail in Arrow.5 

If the investor's initial wealth is A, of 
which he invests an amount a in the 
risky asset, his final wealth is the random 
variable 

Y = A + aX. (1) 

With a preference ordering U(Y) over 
levels of final wealth, the optimal value 
of a is the one which maximizes E[U(Y)], 
subject to the condition 0 < a < A. 

General analysis.-The first two de- 
rivatives of E[U(Y)] are 

dE[ U ( -) =E[ U'( Y)X] 
da 

and 
d2E[U(Y)] =E[U"(fY)X . 

da2 

Assuming general risk aversion (U" < 
0), the second derivative is negative, so 
that a unique maximum point is guaran- 
teed. This might occur at one of the end 

points a 0 or a = A; the condition for 
the former is that dE[U(Y)]/da is nega- 
tive at a = 0, which is seen to imply and 
require E(X) < 0. Thus, the investor 
will hold positive amounts of the risky 
asset if and only if its expected rate of 
return is, positive. 

If the maximum occurs at an interior 
value of a, we have at this point 

E[U'(Y)X] = 0. (2) 

To see how such an optimal value-of a 
depends upon the level of initial wealth, 
we differentiate (2) with respect to A and 
obtain 

da E [U"( Y)X] 
dA E[ U"( Y)X2] (3) 

It is possible to prove that the sign of 
this derivative is positive, zero, or nega- 
tive, according as absolute risk aversion 
is decreasing, constant, or increasing. 

Quadratic utility.-In particular, one 
might consider preferences over prob- 
ability distributions of Y being defined in 
terms of means and variances only. If 
such a preference ordering applies to ar- 
bitrary probability distributions, the 
utility function must clearly be of the 
form 

U(Y)= Y-aY2. (4) 

Then the optimal a is the one which 
maximizes 

E[U(Y)] = E[A + aX - a(A + aX)2] 

= (A - aA)2 + (1 - 2aA)Ea 

- a(V +EI)a2 , 

where E and V denote expectation and 
variance of X, respectively. An interior 
maximum is then given by 

(1 -2aA)E 
a 2a(V+E) (5) 

Thus, the optimal a depends on the level 
of initial wealth. The same is also true of I Arrow, op. cit. 
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OPTIMAL MULTIPERIOD PORTFOLIO POLICIES 217 

the proportion a/A of initial wealth held 
in the risky asset. It is seen that da/dA < 
0; this is the disconcerting property men- 
tioned above of any utility function ex- 
hibiting increasing absolute risk aver- 
sion. 

With the optimal value of a given by 
(5), maximum expected utility will be 

maxE[U(Y)] =4a(V+E2) 

(6) 
+ V (A- A ) 

V+E 2 

Tobin's formulation.-Tobin's formu- 
lation is somewhat different.6 He also 
assumes quadratic utility, but the argu- 
ment of the utility function is taken as 
one plus the portfolio rate of return. Sec- 
ond, he takes as decision variable the 
proportion of initial wealth invested in 
the risky asset. If this fraction is called 
k, he thus wishes to maximize expected 
utility of the variate R = 1 + kX. In the 
symbols used above, 

Y A+aX=1+ a X=+kX. 
A A A 

Then with a quadratic utility function 

V(R)=R- 3R2, (7) 

k is determined such that E[V(R)] is a 
maximum: 

E[V(R)] = E[1 + kX - (1 + kX)2] 

= (1 - A) + (1 - 23)Ek 
- 3(V + E2)k2 . 

An interior maximum is given by the 
decision 

(1- 2f3)E 

The important point to be made here is 
that the way (8) is written, it seems as if 
the optimal k is independent of initial 
wealth. In the formulation of the maxi- 

mization problem, the level of initial 
wealth has somehow slipped out the back 
door. Also, the resulting maximum level 
of expected utility would seem to be inde- 
pendent of initial wealth. 

So it appears to be a conflict between 
the two formulations. A little reflection 
shows, however, that when initial wealth 
is taken as a given, constant datum (say, 
100), any level of final wealth can ob- 
viously be equivalently described either 
in absolute terms (say, 120) or as a rate 
of return (.2). But in considering a final 
wealth level of 120, it is immaterial to the 
investor whether this is a result of an 
initial wealth of 80 with yield .5 or an 
initial wealth of 100 with yield .2 (or any 
other combination of A and R such that 
AR = 120). The explanation of the ap- 
parent conflict is now very simple: When 
using a quadratic utility function in R, 
the coefficient f is not independent of A 
if the function shall lead to consistent 
decisions at different levels of wealth. 
This is seen by observing that R = Y/A, 
so that 

V(R) =V = _: I 

which is equivalent, as a utility function, 
to Y - (3/A) Y2. What this implies, 
then, is that a utility function of the form 
R - OR2 cannot be used with the same 13 
at different levels of initial wealth. The 
appropriate value of : must be set such 
that 13/A = a-that is, : must be 
changed in proportion to A. But when 
this precaution is taken, Tobin's formu- 
lation will obviously lead to the correct 
decision; with A = aA substituted in 
equation (8), we get 

a (1-2aA)E 
A 2aA (V+E2)' 

that is, 
( 1-2aA)E a 
2a(V+E2) 6 Tobin, "Theory of Portfolio Selection." 
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which is the same solution as (5). For ex- 
ample, if the utility function for final 
wealth is Y - (1/400) Y2, it may be per- 
fectly acceptable to maximize the expec- 
tation of R - 'R2, but only if initial 
wealth happens to be 100. 

It should be kept in mind that when 
we are here speaking of different levels of 
wealth, this is to be interpreted strictly 
in terms of comparative statics; we are 
only asserting that if the investor had 
had an initial wealth different from A, 
then his optimal k would have been dif- 
ferent from (1 -2 aA)E/2 aA (V + E2). 
When we consider different levels of 
wealth at different points in time (in a se- 
quence of portfolio decisions), other fac- 
tors may also affect the decisions, as we 
shall see later. And it will also become 
clear that attempting to use a utility 
function of the form of equation (7) in 
such a setting may easily cause difficul- 
ties. 

Utility functions implying constant as- 
set proportions.-If attention is not re- 
stricted to quadratic utility functions, 
however, it may be possible to get invest- 
ment in the risky asset strictly propor- 
tional to initial wealth. 

Requiring that a/A = k is seen to be 
the same as requiring that choices among 
portfolios be based upon consideration of 
the probability distribution for the port- 
folio's rate of return independently of 
initial wealth: the choice of a probability 
distribution for R = 1 + kX consists in 
a choice of a value of k, this choice being 
made independently of A. Therefore, the 
problem of finding the class of utility 
functions with the property that a/A = 
k is equivalent to the problem of deter- 
mining the class of utility functions with 
the property that choices among distri- 
butions for rate of return on the portfolio 
are independent of initial wealth. 

If two utility functions U and V repre- 

sent the same preference ordering, there 
exist constants b and c such that V = 

bU + c. Therefore, if a utility function 
U determines an ordering of probability 
distributions for rate of return and this 
ordering is identical with the ordering of 
probability distributions for final wealth, 
then U(R) and U(Y) = U(AR) must 
represent the same ordering. This must 
mean that U(R) and U(AR) are linear 
transformations of each other: 

U(AR) = bU(R) + c. (9) 

Here b and c are independent of R, but 
they may depend upon A. 

Differentiation of (9) with respect to R 
gives 

U'(AR)A = bU'(R). (10) 

Then differentiating (10) with respect to 
A, we have 

U"(AR)AR + U'(AR) = b'U'(R), (1 1) 

where b' denotes derivative with respect 
to A. From (10) the right-hand side is 
(b'A/b)U'(AR), so that (11) can be writ- 
ten 

bA U"(Y)Y+U'(Y)= b U'(Y) 
or 

U"(Y)Y bI A 
U'( = 1---. (12) 

Since this must hold for independent 
variations in Y and A, both sides are 
constant. This means that relative risk 
aversion must be constant, equal to, say, 
Ay. It is easily verified that the only solu- 
tions to this condition are linear trans- 
formations of the functions 

U(Y) = In Y if '=1 (13a) 
and 

U (Y) =y1-- if Py 0 . (1 3b) 

Thus, utility functions belonging to this 
class are the only ones permitted if con- 
stant asset proportions are to be optimal. 
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To see that these functions indeed sat- 
isfy our requirement, we observe that 
when relative risk aversion is constant, 
that is, when 

U"f( Y) Y 
U'( Y) 

then 
U"(Y)YX = -yU'(Y)X, 

and so 

E[U"(Y)XY] = --yE[U'(Y)X]. 

At an interior maximum point we have 

E[U'(Y)X] = 0, 
and so 

E[U"(Y)XY] = 0, 

or 
AE[U"(Y)X] + aE[U"(Y)X21=0; 

thus 
E[U"(Y)XJ a 
E[ U"( Y)X2] A' 

But from (3) the left-hand side is da/dA; 
hence da/dA = a/A, implying a = kA. 

The conclusion is therefore that there 
may exist preferences which can be repre- 
sented by a utility function in rate of 
return only, but then it must be of the 
form In R or R1- (In Y and Y1Fo are 
equivalent, as utility functions, to In R 
and R1zz). Other forms, like the quad- 
ratic (7) with constant A, are ruled out. 

We note for later reference that when 
U = In Y, the maximum condition be- 
comes 

so that k is determined by the condition 

E \ 

Maximum expected utility is then 

max E (In Y) = InA (14) 
+ E [ln (1 + kX) (4 

Similarly, with U = YF1', k will be de- 
termined by 

E[(1 + kX)-YX] = 0, 

and so correspondingly 
maxE(Y'-Y) = A-'E[1 + kX)'-z] . (15) 

B. MORE GENERAL CASES 

Almost all the analysis above is easily 
generalized to the case where the yield on 
the certain asset is non-zero or to the case 
where the yields on both assets are ran- 
dom. Since the analyses are in both cases 
completely parallel, we shall only give 
the results for the more general of the 
two (both yields random). Results for the 
former case are then obtained simply by 
replacing the random yield X2 by a non- 
random variable r to represent the inter- 
est on the certain asset. 

Generalization to an arbitrary number 
of assets would be trivial and add little of 
theoretical interest. 

If the random rates of return on the 
two assets are X1 and X2, and a is the 
amount invested in the first asset, then 
final wealth is 

Y= (1 + X2)A + a(Xi - X2) . 

By so to say substituting (1 + X2)A for 
A and X1 - X2 for X throughout, most 
of the conclusions from the discussion of 
the simplest case are readily obtained. 

Thus, in the general case, an interior 
maximum point would be one where 

E[U'(Y)(X1- X2)] = 0, (16) 

and the corresponding expression for 
da/dA would be 

da E[ U"(Y)(X1-X2)(1 +X2)] 
d A Et " ( ( X1-X2 ) 2 ](17) 
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It is clear that in general nothing can be said about the sign of this derivative; 
for X2 non-random, the dependence on the slope of the absolute risk-aversion 
function is exactly as before, however. 

In the case where utility is quadratic in wealth (and assuming X1 and X2 to be 
independently distributed), the optimal a will be given by 

a E1-E2-2aA [ (1 +E2) (E1-E2) -V21 18) 
2ca[VI+V2+(El-E2)2( 

and correspondingly 

maxE[ U ( Y) V1( 1 +E2) +V2 (1 +E1) 
VI1+V2 + (El -E2 )2 

(19) 

XF V1 (l1+E2)2?+V2 (l?E1)2 +V1V2A21+ (E1-E2)2 
[ V1V( 1 +E2) +V2 (1 +E1) 4a[Vi+V2 + (El-Ei)2] 

With the Tobin formulation, however, the optimal k would be expressed as 

E1-E2-2f [ (1 +E2)(E1-E2) -V2( 
2fl[V1+V2+(E1-E2)2( 

and, again, if decisions are to be consist- 
ent at different levels of initial wealth, A 

must be proportional to A. 
The derivation of the utility functions, 

(13a) and (13b), is clearly independent of 
the specific setting of the decision prob- 
lem. The sufficiency part of the proof is 
also completely analogous. 

With the utility function U = In Y, k 
would now be determined by the condi- 
tion 

+ 1 -X2 ) 

giving 

max E(ln Y) =nA (21) 
+ E{ln [1 + X2+ k(Xi-X2)]} ( 

Similarly, with U = Y1Fo, k is deter- 
mined by 

E{[1 + X2+ k(X -X2)]-'(X1 -X2)}= 0, 

giving 

max E(Y'Y) (22) 

= Al-'E{[l + X2 + k(X1 - X2)'y1I . 

III. MULTIPERIOD MODELS 

A. GENERAL METHOD OF SOLUTION 

By a multiperiod model is meant a 
theory of the following structure: The 
investor has determined a certain future 
point in time (his horizon) at which he 
plans to consume whatever wealth he has 
then available. He will still make his in- 
vestment decisions with the objective of 
maximizing expected utility of wealth at 
that time. However, it is now assumed 
that the time between the present and 
his horizon can be subdivided into n peri- 
ods (not necessarily of the same length), 
at the end of each of which return on the 
portfolio held during the period material- 
izes and he can make a new decision on 
the composition of the portfolio to be 
held during the next period. 

This formulation of the problem de- 
liberately ignores possibilities for inter- 
mediate consumption. Consumption and 
portfolio decisions are clearly interre- 
lated, and no defense for leaving con- 
sumption decisions out of the picture can 
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be offered except for the simple (but ad- 
vantageous) strategy of taking one thing 
at a time. Such a partial analysis has 
been justified by picturing the investor 
as providing for a series of future con- 
sumption dates by dividing total wealth 
into separate portfolios for each con- 
sumption date, with each such portfolio 
to be managed independently.7 This pro- 
cedure must be rejected as clearly sub- 
optimal and hardly represents a satisfac- 
tory solution. Neither the decision on 
how much to consume in any given pe- 
riod nor the management of any given 
subportfolio could generally be independ- 
ent of actual performance of other port- 
folios. The first attempts to consider 
squarely the interrelations between con- 
sumption and portfolio decisions appear 
to be represented by the still unpublished 
papers by Dreze and Modigliani and by 
Sandmo.8 

In our version of the theory, an in- 
vestor, starting out with a given initial 
wealth Ao, will make a first-period deci- 
sion on the allocation of this wealth to 
different assets, then wait until the end 
of the period when a wealth level A 1 ma- 
terializes. He then makes a second-period 
decision on the allocation of A1, and so 
on. 

It is clear that for such a multiperiod 
planning problem it is rarely optimal, if 
at all possible, to specify a sequence of 
single-period decisions once and for all. 
Nor could it generally be optimal to 
simply make a first-period decision that 
would maximize expected utility of 
wealth at the end of that period while 
disregarding the investment opportuni- 
ties in the second and later periods. 

Rather, any sequence of portfolio deci- 
sions must be contingent upon the out- 
comes of previous periods and at the 
same time take into account information 
on future probability distributions. It is 
only when the last period is reached, and 
the final decision is to be taken, that the 
simple models of the preceding section 
are applicable. 

At the beginning of the last period (n) 
the investor's problem is simply to make 
a decision (call it d.), dividing his wealth 
as of that time, An-1 among the different 
assets such that E4[U(An)] is maximized 
(the notation En indicates expectation 
with respect to probability distributions 
of yields during the nth period). But once 
he has thus chosen his optimal decision 
(depending, in general, upon An-1), the 
maximum of expected utility of final 
wealth is determined solely in terms of 
An-1, that is, 

max En[U(An)] =na (An-l) . 
dn 

The function 4n-1 is referred to as the 
"indirect" or "derived" utility function 
and is the appropriate representation of 
preferences over probability distributions 
for An-1. Therefore, the optimal decision 
d._1 to choose at the beginning of period 
n - 1 is the one which maximizes 

En-J[?n-i(An-] = En-,{max En[U(An)] } 
dn 

In this way it is possible to consider 
the next-to-last decision as a simple one- 
period problem, granted that the objec- 
tive is appropriately defined in terms of 
the "derived" utility function. But to do 
so obviously requires the investor to 
specify the optimal last-period decision 
for every possible outcome of yield dur- 
ing period n - 1. It is by means of such 
a backward-recursive procedure that it is 
possible to determine an optimal first- 
period decision. 

7lbid. 
8 J. Dreze and F. Modigliani, "Consumption 

Decisions under Uncertainty" (manuscript in prepa- 
ration); A. Sandmo, "Capital Risk, Consumption, 
and Portfolio Choice" (manuscript in preparation). 

This content downloaded from 202.115.118.13 on Wed, 11 Sep 2013 02:33:00 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


222 THE JOURNAL OF BUSINESS 

Both for a theoretical development 
and for purposes of practical computa- 
tion, the solution method is very much 
complicated if statistical dependence 
among yields in different periods (i.e., 
serial correlation) is to be allowed for. 
We shall therefore assume throughout 
that such dependence is absent, although 

this certainly means some loss of gen- 
erality. The basic nature of the approach 
is the same, however, and the conclusions 
we are to derive are certainly unaffected 
by this simplification. Dependence among 
yields within any period would be rela- 
tively easy to handle, but for a theoreti- 
cal development it does not seem worth 
the extra trouble. Also, we shall ignore 
transaction costs. 

B. A TWO-PERIOD EXAMPLE WITH 

QUADRATIC UTILITY 

To illustrate the procedure, we shall 
develop in some detail a numerical ex- 
ample with two assets with random 
yields. To simplify the notation as much 
as possible, it is assumed that the yields 
X1 and X2 are independent and that their 
distributions are the same in both peri- 
ods. We take a, and a2 to be investment 
in the first asset in periods 1 and 2, re- 
spectively. The data of the example are 
given in Table 1. 

TABLE 1 

ASSET 1 ASSET 2 

Yield P Yield P 

0.0 .5 -1.0 .5 
0.2 .5 2.0 .5 

E1= . 1 V1=.01 E2=. 5 V2=2.25 

Initial wealth: A o=200 
Utility function: U=A2-(1/1,OOO)A2 

The optimal decision for the second 
period is obtained from (18) as 

a2, -=.A 400, (23) 4.84 

This expression defines the best possible 
decision/for any value of wealth at the 
beginning of the second period. When 
this decision rule is adopted, the ex- 
pected value of final wealth will be, ac- 
cording to (19): 

k1(Ai) =maxE2[U(A2) I 
a2 

2.94 2.Al 7 27675 A2 + const. 
2.42 2490 / 

It is the expectation of this function 
which is to be maximized by the first- 
period decision, which we achieve by 

TABLE 2 

Xi X2 Ai a 2 
a2 in % Xi X: Ai ~~~~~~~ of Al 

0.0 -1 161.2 107.2 66.5 
0.2 -1 193.4 145.1 75.0 
0.0 2 277.6 244.3 80.0 
0.2 2 309.8 282.2 91.1 

maximizing the expectation of the func- 
tion in parentheses: 

2.76 752 
maxE1 Al- - A1l a, 2490 / 

Using formula (18) again (with a= 

2.7675/2490), we then get the optimal a, 
as 

5.7Ao-360 (2) 
a14.84 

Thus, the optimal decision to be effected 
immediately is to invest about 80.6 per 
cent in asset 1 and the remainder in asset 
2. 

The possible outcomes of the first- 
period portfolio are then as shown in 
Table 2 (each with probability '). 
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The example illustrates several impor- 
tant points. First, although it is possible, 
and indeed necessary, to specify in ad- 
vance an optimal decision rule for the 
second-period investment, it is not pos- 
sible to determine the specific decision to 
be taken. This will depend upon the out- 
come of the "experiment" performed in 
the first period. 

Second, the decision rules are generally 
different in different periods: the rela- 
tionship in equation (23) between the 
optimal a2 and A1 is different from the 
relationship in equation (24) between the 
optimal a1 and A o. The reason for this is 
that in period 1 the investor must take 
into account the probability distribu- 
tions for the second period, because the 
"derived" utility function depends on it. 
More explicitly, it is seen that in period 1 
he still maximizes a quadratic utility 
function, but the coefficient a is now re- 
placed by 

V1( 1 +E2 ) 2 +V2 ( 1 +E1) 2 + V1V2 
V10(+E2) +V2(1+E1) a 

(cf. [19]). Thus, even if the investor hap- 
pens to end up at the end of the first pe- 
riod with the same wealth as he had at 
the beginning (this is not actually pos- 
sible in the example), he will make a dif- 
ferent decision. In the example, with 
Al 200, he would have invested a 
smaller amount in asset 1 (a2 = 152.8), 
thus making up for the loss of time left 
before the horizon by playing more 
boldly. Under certain conditions, it may 
be possible to identify such a "time ef- 
fect," and we shall return to a discussion 
of that problem below (Sec. III D). 

C. UTILITY FUNCTIONS ALLOWING 
MYOPIC DECISIONS 

As noted, it is generally non-optimal 
to make decisions for one period at a 
time without looking ahead. There may 

be utility functions, however, for which 
such a procedure is optimal. 

We shall say that if the investor's se- 
quence of decisions is obtained as a series 
of single-period decisions (starting with 
the first period), where each period is 
treated as if it were the last one, then he 
behaves myopically. With myopia, the 
investor bases each period's decision on 
that period's initial wealth and probabil- 
ity distribution of yields only, with the 
objective of maximizing expected utility 
of final wealth in that period while dis- 
regarding the future completely. It is ob- 
vious that if it were optimal to make de- 
cisions in this manner, the problem of 
portfolio management would be greatly 
simplified. But, also on the theoretical 
level, it is interesting to isolate those util- 
ity functions for which such behavior is 
optimal. 

The set of utility functions for which 
myopia is optimal will generally change 
according to assumptions about the na- 
ture of the asset yields. Here we shall 
analyze the case with one riskless asset 
with yield r. For arbitrary r, it will be 
shown that the only utility functions al- 
lowing myopic decision making are the 
logarithmic and power functions which 
we have encountered earlier. For r = 0, 
the set includes other functions; it is gen- 
erally characterized by the condition 

__ U'( Y )_ +Xy 
U'if(Y) 

It now turns out that this larger set 
still requires only a very modest amount 
of foresight even when r 5 0. All that 
needs to be known about subsequent pe- 
riods is the value (or values) of r, while 
information about the yield distribution 
for the risky asset is unnecessary. In such 
cases, the investor can make his immedi- 
ate decision as if the entire resulting 
wealth would have to be invested at the 
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riskless rate(s) for all subsequent periods. 
We may characterize this behavior as 
partiall myopia." Thus, while it is not 
optimal to behave as if the immediate 
period were the last one (as with com- 
plete myopia), the investor can behave 
as if the immediate decision were the last 
one. 

We shall begin by considering the deci- 
sion for the next-to-last period; we can 
then revert to the simple notation used 
in Section II. Thus, we let Y represent 
final wealth, so that A is wealth at the 
end of the next-to-last period. We have 
here 

Y = (1 + r)A + a(X-r). (25) 

Generally, the optimal last-period deci- 
sion a is determined by the condition 

E[U'(Y)(X - r)] = 0 (26) 

(Cf. [16]). Assuming (26) to hold, we 
have seen that the relevant utility func- 
tion for evaluating the next-to-last deci- 
sion is 

O(A) = E[U(Y)]. 

If, on the other hand, A was to be in- 
vested entirely in the riskless asset, final 
wealth would be simply A * = (1 + r)A. 
In that case, the relevant utility function 
for evaluating the next-to-last decision 
would be U(A*). Then, if this partial 
myopia is to lead to the correct decision, 
E[U(Y)] and U(A*) must be equivalent 
as utility functions-that is, there must 
be constants b and c (b > 0) such that 

E[U(Y)] = bU(A*) + c. 

To eliminate the constant c, we differen- 
tiate with respect to A: 

E jU'(Y)[1+r+ jA(X- 

=b (1 + r) U(A*), 

or 

(1 + r)E[ U'(Y) I +E[ U'(Y) (X - r) 

X da = b (1+ r) U'(A*), dA 

so in view of (26) we have the equivalent 
formulation 

E[U'(Y)] = bU'(A*). (27) 

If complete myopia is to be optimal, the 
corresponding condition becomes 

E[U'(Y)] = bU'(A). (28) 

Of course, for the case r = 0, the two 
conditions coincide. 

We shall take (27) first and show that 
a necessary and sufficient condition for 
(27) to hold is that the utility function is 
such that 

U'(Y) 
U"f( Y) 

where jt and X are independent of Y. The 
function - U'(Y)/U"(Y) is the inverse 
of the absolute risk-aversion function 
and is sometimes referred to as the risk- 
tolerance function. Thus, we require risk 
tolerance to be linear in wealth. Apart 
from linear transformations, the follow- 
ing (and only the following) forms of 
utility functions satisfy this condition 
(for p; - 0): 

Exponential: - e-yh (forX 0); (29a) 

Logarithmic: in (Y + ,p) (for X = 1); (2 9b) 

Power: + 2 Y) 1- 29c) 

(otherwise). 

It is noticed that quadratic utility func- 
tions are included in this set as the spe- 
cial case X = -1. When A = 0 (constant 
relative risk aversion) we have seen that 
the set shrinks to In Y and Y'-'1". 
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Suppose that 

U'( Y) _ lf l(Y) =>+;Yj (30) 

that is, 

-U'(Y) 
(31) 

= [u + XA* + Xa(X - r)]U"(Y). 

Multiplying through by (X - r) and 
taking expectations gives 

-E[U'(Y)(X - r)] 

= (C + XA *)E[U"(Y) (X - r)] 

+ XaE[U"(Y)(X - r)2]. 

But on the left we have zero, so that 

(1+r)E[U"(Y)(X-r)] (1+r)Xa 
E[U"(Y)(X-r)2] A+XA * 

Here we recognize the expression on the 
left as da/dA (cf. [17]); hence 

da (1+r)Xa 
dA ,+ (1+r)XA 

This is a simple differential equation with 
general solution form 

a = C[, + (1 + r)XA]. (32) 

Consequently, 

da 
(1+r)X. 

With this result we get 

,+ XY + XA* + XC(A + XA*)(X-r) 

- (4 +XA*) 

Xl +r+ da(X-r)] 

1 dY 
1+r,4+ *)dA' 

Therefore, from (31), 

U'( Y) 1 U((A*) U"(Y)dY 
l~Ul(A*)dA 

so that 

Et U ( ) = + r U11 ( A* ) 

XE [U" (Y)d-] 

1 U'(A*) 
1+r U1'(A*) 

dA 

This is the same as 

d 
In Ed U'() d In U'(Ad dA d A 

hence 
E[U'(Y)] = bU'(A*)I 

where b is a constant of integration. This 
establishes the sufficiency of our condi- 
tion for optimality of partial myopia. 

To demonstrate necessity, we observe 
that the condition 

E[U'(Y)] = bU'(A*), 

with b independent of A, can be satisfied 
only if there exists, for each value of X, a 
factor h(X) such that 

U'(Y) = h(X) U'(A*). (33) 

Then bis to be taken as E[h(X)]. For 
each outcome of yield X, the value of 
U'(Y) is proportional to U'(A*) by a 
factor which is independent of A; if this 
were not the case, the weighted sum b of 
such factors could not be independent of 
A, either. 

Considering alternative outcomes of 
yield, we differentiate (33) with respect 
to X: 

aU"(Y) = h'(X)U'(A*). (34) 
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For the particular value X = r, this be- 
comes 

aU"(A*) = 1'(r) U'(A*) 

so that 

a = '(r)U(U'(A) (35) 
(rUlf(A*) 

Thus, risky investment must be propor- 
tional to the risk-tolerance function. We 
substitute for a in (34) and get 

Ulf ( Y ) = h (X ) Ulf ( A*). 
k'(r) 

Multiplying with (X - r) and (X -r)2 
and taking expectations gives, respec- 
tively, 

E[U"(Y)(X -r)] = kU"(A*) 

and 
E[U"(Y)(X - r)2] =k2U"(A 

where k1 and k2 are constants. But this 
means that da/dA is constant or that a is 
a linear function of A. It then follows 
from (35) that the risk-tolerance function 
is also linear in wealth, say, 

- U' (Y) 
=A+XY. (36) 

U"l( Y) 

The necessary and sufficient condition 
for complete myopia to be optimal (as de- 
fined by [28]) is that 

U' ( Y) 

that is, relative risk-aversion should be 
constant. By an argument parallel to 
that given above, it will be found that 
(28) implies 

'(r) ,U'(A) (3 7) 

(corresponding to [35]) and further that 
-U'(A)/U"(A*) is a linear function of 

A. This latter condition is clearly satis- 
fied only if 

U'I(A) 

However, from (32) we know that if 

U'(A) =+XA 
U" (A) 

then a is proportional to -U'(A*)/ 
U"(A *). This must mean that (28) holds 
if and only if U'(A*) and U'(A) are pro- 
portional, say, 

U'(A*) = v(r)U'(A). 

Now differentiate with respect to A and 
r; this gives 

(1 + r)U"(A*) = v(r)U"(A) 
and 

AU"(A*) = v'(r)U'(A), 

from which we get 

U"(A) A (1 + r) v'(r) 
U'(A) v(r) 

Since this must hold for independent 
variations in A and r, both sides must be 
constant, and consequently 

U'(A) 
U"(A) XA, 

proving our proposition. 
We notice in addition that according 

to (21) and (22) the functions In Y and 
Y1-' also allow complete myopia when 
both yields are random. It can readily be 
shown that the condition is also neces- 
sary. 

The results of this section are summa- 
rized in Table 3. 

D. TIME EFFECTS AND STATIONARY PORTFOLIOS 

The analysis of the preceding section 
was, at least in form, concerned with the 
relationship between the utility function 
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for the last period and the derived utility 
function for the next-to-last period. The 
main reason for this was notational sim- 
plicity; it is clear that what we were 
really concerned with was the derived 
utility functions for any two subsequent 
periods-that is, we really showed that if 
complete myopia is optimal, then the 
derived utility function for any period 
n - j is related to that of period n - 

j+ iby 

On-j(A~n-j) - n_j+l(A-n~j (3 8) 

(where ' denotes equivalence as utility 
functions). It is obvious that if complete 

myopia is optimal for the next-to-last pe- 
riod, it is also optimal for all other 
periods (and conversely). For j 1, (38) 
becomes 

O n- (A~n-) -U(An-1) 

so that, by induction, we have 

On_j(A-nj)- U(An-j) .(3 9) 

Similarly, when partial myopia is opti- 
mal, the relation between derived utility 
functions for subsequent periods is 

4n-i(An~j) ''kn-j+I[(l + rnj+1)An-j] , (40) 

and consequently also 

O)n-j(A n_-j) ,U(ZnjAn-j) X(41) 

where 

Zn-j = |(1+ rn-j+l) 
i=1 

(with the interpretation zn = 1)-that is, 
with partial myopia, the optimal decision 
a"_-, when there are j + 1 periods left to 
the horizon, is made as if the resulting 
wealth A n- were to be invested at the 
riskless rates for all remaining periods. 

We are now in a position to discuss the 
question of whether an optimal portfolio 
policy can be stationary in the sense that 
the same proportion is invested in each 
asset in every period.9 An investor who 

follows such a policy determines the pro- 
portions to be held in the different assets 
once and for all; at the end of each period 
he simply ploughs back the yield earned 
during the period in the same propor- 
tions. 

Regardless of the investor's prefer- 
ences, his optimal policy could not be 
stationary unless yield distributions were 
stationary. It is equally obvious that this 
condition is not sufficient. Under a sta- 
tionary policy, decisions are independent 
of conditions during later periods, includ- 
ing their number. But this means that a 
stationary policy cannot be optimal un- 

TABLE 3 

NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMALITY OF: 

Complete Myopia Partial Myopia 

One riskless asset with zero 
yield .................... - U'(Y)1U"( )]-A+XY ........................... 

One riskless asset with non- 
zero yield ................ - [U'(Y)/U"(Y) =X Y -[U'( Y)/U"(YI]=A+xy 

Both assets with random 
yield .................... -[U'( /U"( )]=xY ........................... 

9 Tobin, "Theory of Portfolio Selection," sec. 
2.2.2.2. 
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less the investor's preferences are such 
that complete myopia is optimal, mean- 
ing that the utility function must be 
either In Y or Y'-z. But this is clearly 
also sufficient, because we have seen that 
these utility functions (and only these) 
allow the proportion held of each asset to 
be determined independently of total 
wealth. 

In the case when one yield is zero with 
certainty, we have seen that other utility 
functions also allow complete myopia. 
However, for all these the optimal asset 
proportions depend upon the level of 
wealth at the beginning of the period. 
When this is changing from one period to 
the next, the asset proportions change ac- 
cordingly (even if yield distributions are 
the same). WVe might, of course, conceiv- 
ably happen to observe an investor with, 
say, a quadratic utility function holding 
a stationary portfolio because all yields 
turned out by chance to be zero and be- 
cause yield distributions were the same 
from period to period. This would ob- 
viously be a rather exceptional occur- 
rence. On the average, quadratic inves- 
tors will, as we shall see shortly, reduce 
their holdings of the risky asset over 
time. 

We thus conclude that a stationary 
portfolio policy is optimal if and only if 
both these conditions are satisfied: (1) 
the utility function is either In Y or 
Yl-z; (2) yield distributions are identical 
in all periods. 

On a couple of occasions allusion has 
been made to a "time effect" in multi- 
period portfolio problems. We can put 
the problem this way: With a given 
wealth and a given yield distribution for 
the immediate period, how does the opti- 
mal investment depend upon the number 
of periods left before the horizon? If com- 
plete myopia is optimal, there is, by defi- 

nition, no time effect. When only partial 
myopia is optimal, such an effect is pres- 
ent, however, and is furthermore quite 
easy to analyze. We shall again consider 
the case with one riskless asset. 

Using (41), we can write the equiva- 
lent of (33) as 

U'(zn- j+,Anj+l) 

= hn-1?(Xn-j+1)U'(ZnA-n ) 

We will then get, corresponding to (35), 

=I-j+l ( rn-j+i) U' (zn-jAn-) 
a,-j~rl 3 X-j+i U/ (zn-i An-j); 

that is, 

at,_j+= h-'-j+l ( rn-j+l) (1 + rn-j+l) 

X~z +XAAn-j] 

Now, if we had hadg = 0, we know that 
anj+1/An-i would have been independ- 
ent of j, and therefore the factor 
IZ'n_;+1(rn_+i) (1 + r,&-j+) must be inde- 
pendent of j. We can therefore write 

an-j+ ~= kn-j+l [; + XAnj J (42) 

where kn-j+i depends only upon r-j+l 
and the distribution of Xj~l but on 
nothing beyond the immediate period. 

We can now see that the time effect 
depends upon the values of ,u and of the 
interest factor for the period between 
now and the horizon. Assuming all inter- 
est rates positive, Zn-1 increases with j. 
We can then say that the time effect is of 
the same sign as ,u in the sense that for 
,u > 0 (,u < 0), investment in the risky 
asset will be larger (smaller) as the hori- 
zon is coming closer (given the character- 
istics of the immediate period). Thus, as 
indicated earlier, a quadratic utility 
function implies a positive time effect. 
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Since the sign of y is the same as the 
slope of the relative-risk-aversion func- 
tion, we could alternatively say that the 
time effect is positive or negative accord- 
ing as relative risk aversion is increasing 
or decreasing with wealth. 

A further observation on (42) is worth 
noting. As j increases, the importance of 
the value of y becomes smaller, or, to put 
it differently, even if complete myopia is 
not optimal, it is nearly so when the 
horizon is a long way off. This has a com- 
forting practical implication: it is difti- 

cult to estimate interest rates for periods 
far into the future, but we now know 
that we do not need to worry much about 
it. Only when the horizon comes reason- 
ably close do we have to be more careful 
in calculating optimal investments. 

Do any of these results carry over to 
arbitrary utility functions? They seem 
reasonable enough, but the generaliza- 
tion does not appear easy to make. As 
one usually characterizes those problems 
one hasn't been able to solve oneself: this 
is a promising area for future research. 
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