Review exercises –7:

1. The mass of our pencil is 10 grams. The equivalent mass energy is _____a. $2.5 \times 10^{14} \,\mathrm{kWh}$ b. $0.83 \times 10^3 \,\mathrm{kWh}$ c. $2.5 \times 10^8 \,\mathrm{kWh}$ d. $0.83 \times 10^6 \,\mathrm{kWh}$

2. The total mass energy of 200 grams of carbon isa. 1.8×10^{16} joulesc. 1.8×10^{16} Btub. 9×10^{16} joulesd. 3.6×10^{16} calories

3. The following reaction takes place: ${}_{4}{}^{9}Be_{5} + {}_{2}{}^{4}He_{2} --> {}_{6}{}^{12}C_{6} + X$, What is X______ a. a neutron c. an alpha particle b. a proton d. a deuteron

复旦大学环境科学与工程系 Department of Environmental Science and Engineering, Fudan University

4. In the radioactive decay of ${}^{14}_{6}C_{8}$ to ${}^{14}_{7}N_{7}$, the following particles are emitted ______ a. an electron (negative) and an antineutrino b. an electron (positive) and neutrino

- c. only an electron (negative)
- d. an alpha particle

5.The half-life of 137 Cs is 30 years. In how many years will a 1000 Ci sourcebe down to 62.5 Ci?a. 150b. 60c. 90d. 120

6. The reason that thermal neutrons (0.025 eV) are used in conventional light-water reactors such as the BWR is _____

a) the probability of a thermal neutron causing a fission reaction with ²³⁵U is very high b. the probability of a thermal neutron causing a fission reaction with ²³⁸U is very high c. there is no choice since the neutrons are going to be slowed down in the coolant anyway d. the neutrons that come from fission are thermal to begin with, so there is no choice

复旦大学环境科学与工程系 Department of Environmental Science and Engineering, Fudan University 7. In a typical fission of a uranium nucleus, the number of neutrons emitted is about _____

a. zero to 1 b.2 to 3 c. 10 to 12 d. 235

8. In a typical 1000 MW_e nuclear power plant, about how many uranium nuclei are fissioning per second? a. 10^3 b. 10^{10} c. 10^{15} d 10^{20} e. 10^{25} f. 10^{30} g. 10^{35} h 10^{40}

9. The three isotopes known to be good fission reactor fuels are a. 12 C, 90 Sr , 239 Pu b. 90 Sr , 137 Cs, 232 Th c. 233 U, 235 U, 239 Pu d. 231 U, 237 U, 239 Pu

10. The fuel rods in a commercial thermal light water reactor such as the BWR have in them initially_______
a. natural UO₂ pellets
b) UO₂ pellets with ²³⁵U enriched to about 3%
c. UO₂ pellets with 100% ²³⁵U
d. UO₂ pellets with 100% ²³⁸U

复旦大学环境科学与工程系 Department of Environmental Science and Engineering, Fudan University

