

Shao Mian Emergency Department, Zhongshan Hospital

What is shock

- THE BEGINNINGS OF UNDERSTANDING: THE LATE 19TH CENTURY
- THE AGE OF REASON: 1890—1925
- THE MODERN ERA: BLALOCK'S EPIPHANY
- POSTMODERNISM: CELLULAR PHYSIOLOGY OF SHOCK 1945—1965
- REACHING THE NEW MILLENNIUM: 1990--PRESENT

definition

definition

Pathophysiology

Compensatory mechanism

Organ dysfunction

Hemodynamic Basis of Shock

Blood flow autoregulation

Cardiac output

Preload

Cardiac function curve

Venous Function

- A fundamental determinant of cardiac performance
- Maximal venous return is described by the equation: (Pmc-Pa)/Rv
- Pmc : the mean circulatory pressure
- Pa : the right atrial pressure
- Rv : the venous resistance

Microvascular Function

- Effective tissue perfusion requires intact microvascular function.
- Match blood flow to areas of highest metabolic activity.
- Intrinsic control of blood flow: endothelial stretch receptors, metabolic activity
- Extrinsic control of blood flow: autonomic nervous system

Compensatory mechanism

Baroreceptors and chemoreceptors

Renal compensatory mechanisms

- the juxtaglomerular apparatus : renin, aldosterone, angiotensin II
- the posterior pituitary : vasopressin
- Effects: water retention, vasoconstriction

Organ System Dysfunction

Central nervous system	Encephalopathy (ischemic or septic)
	Cortical necrosis
Heart	Tachycardia, bradycardia
	Supraventricular tachycardia
	Ventricular ectopy
	Myocardial ischemia
	Myocardial depression
Respiratory	Acute respiratory failure
	Adult respiratory distress syndrome
Kidney	Prerenal failure
	Acute tubular necrosis
Gastrointestinal	lleus
	Erosive gastritis
	Pancreatitis
	Acalculous cholecystitis
	Colonic submucosal hemorrhage
	Transluminal translocation of bacteria/antigens

Liver	Ischemic hepatits
	"Shock" liver
	Intrahepatic cholestasis
Hematologic	Disseminated intravascular coagulation
	Dilutional thrombocytopenia
Metabolic	Hyperglycemia
	Glycogenolysis
	Gluconeogenesis
	Hypoglycemia (late)
	Hypertriglyceridemia
Immune system	Gut barrier function depression
	Cellular immune depression
	Humoral immune depression

• Initial signs of end organ dysfunction

- Tachycardia
- Tachypnea
- Metabolic acidosis
- Oliguria
- Cool and clammy skin

- End Organ Dysfunction
 - Progressive irreversible dysfunction
 - Oliguria or anuria
 - Progressive acidosis and decreased CO
 - Agitation, obtundation, and coma
 - Patient death

Classification of Shock

19 December 2011 Last updated at 03:20 GMT

Obituary: Kim Jong-il

The BBC's James Robbins reports on the life of North Korea's Kim Jong-il

Kim Jong-il was one of the world's most reclusive and enigmatic leaders, presiding over a secretive and internationally isolated country. ing Share 🚹 🐸 🗠 🖨

Kim Jong-il dead

Top Stories

French Socialists in poll triumph

Euro sees gains after Spain deal Clashes at anti-Pinochet protest Silicon Valley Bank opens in UK Libya town tribal clashes kill 16

Features & Analysis

Dark tourism Genocide memorials see an increase in visitors

Grandma power Meet the world's oldest female bodybuilder

Cardiogenic Shock

- Cardiogenic shock is a state of inadequate tissue perfusion as a result of cardiac dysfunction.
- Acute myocardial infarction is the leading cause of cardiogenic shock.
- The diagnosis is made by the presence of hypotension and clinical signs indicative of poor tissue perfusion.
- Hemodynamic criteria include sustained hypotension and a reduced cardiac index in the presence of elevated pulmonary capillary occlusion pressure.

Diagnosis of Cardiogenic Shock

Clinical Signs

Hemodynamic Criteria

Hypotension Oliguria Clouded sensorium

Cool and mottled extremities

Systolic blood pressure <90 mm Hg for >30 minutes Cardiac index <2.2 L/min/m₂ Pulmonary artery occlusion pressure >15 mm Hg

Causes of Ca	ardiogenic Shock	
cute Myocardial Infarction	Other Conditions	
Pump failure	End-stage cardiomyopathy	
Large infarction	Myocarditis	
Smaller infarction with pre-existing left ventricular dysfunction	Myocardial contusion	
Infarct extension	Prolonged cardiopulmonary bypass	
Reinfarction	Septic shock with severe myocardial depression	
Infarct expansion	Left ventricular outflow tract obstruction	
Mechanical complications	Aortic stenosis	
Acute mitral regurgitation secondary to papillary muscle rupture	Hypertrophic obstructive cardiomyopathy	
Ventricular septal defect	Obstruction to left ventricular filling	
Free wall rupture	Mitral stenosis	
Pericardial tamponade	Left atrial myxoma	
Right ventricular infarction	Acute mitral regurgitation (chordal rupture)	
	Acute aortic insufficiency	

Risk factors for cardiogenic shock

- Shock is more likely to develop in patients who are elderly, are diabetic, and have anterior infarction.
- Patients with cardiogenic shock also are more likely to have histories of previous infarction, peripheral vascular disease, and cerebrovascular disease.
- Decreased ejection fractions and larger infarctions also are predictors of the development of cardiogenic shock

"Downward spiral"

PRESSORS

- Dopamine
 - <2 renal vascular dilation
 - <2-10 +chronotropic/inotropic (beta effects)
 - >10 vasoconstriction (alpha effects)

• Dobutamine

- positive inotrope
- Vasodilates
- arrhythmogenic

• Norepinephrine (Levophed):

- Vasoconstriction
- inotropic stimulant.
- Vasopressin vasoconstriction
 - Vasoconstriction

Hypovolemic Shock

- Hypovolemic shock can be defined as an acute disturbance in the circulation leading to an imbalance between oxygen supply and demand in the tissues, caused by a decrease in circulating blood volume.
- The condition is lifethreatening and, if left untreated, becomes irreversible after a certain period.
- Rapid and adequate resuscitation is mandatory to save lives. Conversely, hypovolemic shock carries a relatively favorable prognosis, if rapidly and adequately recognized and treated.

- Etiologic classes
 - Hemorrhage e.g. trauma, GI bleed, ruptured aneurysm
 - Fluid loss e.g. diarrhea, vomiting, burns, third spacing, iatrogenic

Blood loss and clinical signs

Ι	II	III	IV
<750	750–1500	1500-2000	>2000
<15%	15-30%	30–40%	>40%
<100	>100	>120	>140
Normal	Decreased	Decreased	Decreased
14–20	20–30	30–40	>35
>30	20–30	5-15	Negligible
Normal	Anxious	Confused	Lethargic
	I <750 <15% <100 Normal 14–20 >30 Normal	I II <750	IIIIII<750

Crit Care. 2004; 8(5): 373–381.

Distributive Shock

- Results from loss of peripheral resistance
 - characterized by an overall decrease in SVR.
 - Initially, CI may be depressed, and ventricular filling pressures may be decreased. After fluid resuscitation, when filling pressures are normalized or increased, CI is usually elevated.

- Sepsis : septic shock is the most common form .
- Neurogenic / spinal
- Toxic shock syndrome
- Anaphylaxis and anaphylactoid reactions
- Toxin reactions drugs, transfusions
- Addisonian crisis
- Myxedema coma

SEPTIC SHOCK

• Physical Examination:

Early– warm wet/ vasodilation, often adequate urine output, febrile, tachypneic. Late – vasoconstriction, hypotension, cool, clammy skin , oliguria,altered mental status.

• Monitor/findings:

Early—hyperglycemia, respiratory alkylosis, hemoconcentration, WBC typically normal or low Late – Leukocytosis, lactic acidosis Very Late– Disseminated Intravascular ,Coagulation & Multi-Organ System Failure

• Hemodynamics:

decreased CO, decreased SVR, decreased SvO2

EGDT of Septic Shock

Figure 2. Protocol for Early Goal-Directed Therapy. CVP denotes central venous pressure, MAP mean arterial pressure, and ScvO₂ central venous oxygen saturation.

Obstructive Shock

- Extracardiac obstructive shock results from an obstruction to flow in the cardiovascular circuit.
- Pulmonary Embolism
- Pericardial Tamponade
- Tension Pneumothorax
- Aortic dissection

MANAGEMENT

- Manage the emergency
- Determine the underlying cause
- Definitive management or support

Manage the Emergency

- How long do you have to manage this?
- Suggests that many things must be done at once
- Draw in ancillary staff for support!
- What must be done?

Manage the Emergency

- One person runs the code!
- Control airway and breathing
- Maximize oxygen delivery
- Place lines, tubes, and monitors
- Get and run IVF on a pressure bag
- Get and run blood (if appropriate)
- Get and hang pressors
- Call your senior

Evaluation

- Done in parallel with treatment!
- distinguish type of shock
- Full laboratory evaluation
- Basic studies CXR, EKG
- Basic monitoring

Determine the Cause

- Often obvious based on history
- Trauma most often hypovolemic
- Postoperative most often hypovolemic
- Debilitated hospitalized patients most often septic
- Must evaluate all patients for risk factors for MI

Definitive Management

- Hypovolemic Fluid resuscitate and control ongoing loss
- Cardiogenic Restore blood pressure and prevent ongoing cardiac death
- Distributive Fluid resuscitate, pressors for maintenance, immediate control for infection, steroids for adrenocortical insufficiency