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Abstract
In most textbooks, after discussing the partial transmission and reflection of a
plane wave at a planar interface, the power (energy) reflection and transmis-
sion coefficients are introduced by calculating the normal-to-interface com-
ponents of the Poynting vectors for the incident, reflected and transmitted
waves, separately. Ambiguity arises among students since, for the Poynting
vector to be interpreted as the energy flux density, on the incident (reflected)
side, the electric and magnetic fields involved must be the total fields, namely,
the sum of incident and reflected fields, instead of the partial fields which are
just the incident (reflected) fields. The interpretation of the cross product of
partial fields as energy flux has not been obviously justified in most textbooks.
Besides, the plane wave is actually an idealisation that is only ever found in
textbooks, then what do the reflection and transmission coefficients evaluated
for a plane wave really mean for a real beam of limited extent? To provide a
clearer physical picture, we exemplify a light beam of finite transverse extent
by a fundamental Gaussian beam and simulate its reflection and transmission
at a planar interface. Due to its finite transverse extent, we can then insert the
incident fields or reflected fields as total fields into the expression of the
Poynting vector to evaluate the energy flux and then power reflection and
transmission coefficients. We demonstrate that the power reflection and
transmission coefficients of a beam of finite extent turn out to be the weighted
sum of the corresponding coefficients for all constituent plane wave compo-
nents that form the beam. The power reflection and transmission coefficients
of a single plane wave serve, in turn, as the asymptotes for the corresponding
coefficients of a light beam as its width expands infinitely.
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1. Introduction

A wave experiences partial transmission and partial reflection when the medium through
which it travels suddenly changes. The power reflection coefficient is defined physically as
the normal-to-interface component of energy flux of the reflected wave to that of the incident
wave, while the power transmission coefficient describes the normal component of energy
flux of the transmitted wave to that of the incident wave. In most textbooks [1–11], for
simplicity, such concepts are introduced for the case where a plane wave strikes on a planar
interface between two media. The energy flux is obtained by computing the normal-to-
interface component of the (period-averaged) Poynting vector. To be more specific, the flows
of power incident on and reflected from the interface are evaluated by the Poynting vectors
= ´S E H of the incident and reflected plane waves, respectively, and the ratio of whose

normal components gives the power (energy) reflection coefficient. However, this simplified
choice of illustration is somewhat ambiguous among students for the following reasons. Since
the plane wave is of infinite spatial extent, on the incident side of the interface, the total fields,
based on which the Poynting vector should be computed in order to carry the meaning of
energy current density, are actually a superposition of the incident and reflected fields,
namely, = +E E Ei r and = +H H Hi r. It is indeed not obviously justified to take partial
field, either incident electric and magnetic fields Ei and Hi or reflected fields Er and Hr, to
compute the Poynting vector and assign the implication of energy flux to each individual part,
because the Poynting vector has a quadratic form in field quantities [12, 13]3. In addition, a
plane wave is actually an ideal model that does not exist in the real world since it possesses
infinite extent and energy. Then what do the reflection and transmission coefficients evaluated
for a plane wave imply in real situation where real beams are limited in extent. Although
maybe intuitively known, there is never an explicit numerical demonstration to answer this
question.

In this paper, we develop a clear physical understanding by studying the reflection and
transmission at a planar interface of a more realistic but still easily tractable model, a fun-
damental two-dimensional (2D) Gaussian beam. The finite extent of the light beam in space
enables the spatial separation of the incident and reflected waves in the regime far enough
away from the planar interface. One can therefore compute the Poynting vectors in terms of
the total fields, E and H, on two sides of the interface normal, which reduce indeed to the
fields of the incident and reflected waves, respectively. By doing so, implication of the
Poynting vector as energy current density is truly justified. We then integrate the normal
components of the Poynting vectors on both sides of the normal to obtain the total energy
fluxes transporting towards and reflected from the interface, the ratio of which defines the
power reflection coefficient of a light beam. On the transmitted side, since the refracted wave
itself represents the total field, the integration of the normal component of the Poynting vector

3 In [12, 13], it is demonstrated that the normal component of the Poynting vector evaluated based on the total fields
is continuous across a planar interface between two isotropic lossless media, which, together with a proof that the
nomral component of the mixed term ´ + ´E H E Hi r r i vanishes, implies that the Poynting vector of the reflected
fields from a planar interface can be understood as the energy flux of the reflected wave. We are obliged to one of the
anonymous referees for pointing out this point.
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produces naturally energy flux transmitted through the interface, the ratio of which to the total
incident energy flux characterises the power transmission coefficient of the beam. We
demonstrate that the power reflection and transmission coefficients of a beam of finite
transverse spatial extent turn out to be the weighted sum of the corresponding coefficients for
the each constituent plane wave component that makes up the beam. On the other hand, by
increasing the waist width of the beam, it is found that the beam power reflection and
transmission coefficients approach asymptotically to ‘the power reflection and transmission
coefficients’ of a single plane wave that are evaluated based on the procedure in the standard
textbooks [1–11], implying that the latter describes actually the energy reflection and trans-
port ratios of a light beam in the limit of infinite beam width. As the beam widths W0 in usual
experiments are typically greater than dozens of microns, while the operating wavelength is
only of order of W 1000 , the reflection and transmission coefficients of a single plane wave
serve as a good approximation to those for the real light beam.

2. The power reflection and transmission coefficients of a light beam

For greatest simplicity, let us consider a 2D transverse electric Gaussian beam with its electric
field E normal to the plane of incidence. Generalisation to three dimensions as well as to the
case with E parallel to the plane of incidence is straightforward. Let the beam of waist width
2W0 be focused at the origin of the coordinate system and propagate in direction ¢y , as
schematically shown in figure 1. The planar interface is located at y=0 and the incident
angle qinc depicts the angle between the beam propagation direction ( ¢y -axis) and the interface
normal (y-axis). The E field polarised along z of such a 2D beam reads [14]
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where the wave number p l=k 20 with λ being the wavelength in free space, 2W0 is the

waist width, and b a¢ = - ¢1 2 . Here we have excluded the evanescent wave components

Figure 1. Schematic plot of a two-dimensional Gaussian beam with focal width 2W0

incident on a planar interface depicted by y=0 at an incident angle qinc. The beam is
focused on the origin and propagates in direction ¢y . Two magenta dashed arrows show
the range of wave vectors used to describe the beam such that the plane wave
components forming the beam with upwards wave vectors are all neglected. See text
for more details.
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with a¢ >∣ ∣ 1, which is well justified for loosely focused beam with  lW 20 . Equation (1)
actually expresses a beam as a superposition of a series of homogeneous plane waves, which
is known as the angular spectrum representation of optical field in optics [15, 16], except that
we have excluded the evanescent wave components for simplicity. Based on the
transformation between two coordinates ( ¢ ¢x y, ) and (x y, ),

q q
q q

¢ = -
¢ = - -
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y x y

sin cos ,

sin cos ,
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inc inc

the incident E field (1) can be written as
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The upper and lower bounds of integration are re-set to a = 1max and a q= - ( )cos 2min inc to
guarantee that all the plane wave components constituting the incident beam propagate
downward and distribute symmetrically with respect to the ¢y -axis, namely, with the
directions of their wave vectors lying between the regime bounded by the two magenta
dashed arrows shown in figure 1.

Next we further approximate the integral (3) by a summation over discrete wave vectors.
This is done by simply casting the integral in equation (3) into summation
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Figure 2 shows the results for mimicking a 2D Gaussian beam of waist width l=W2 40

propagating in free-space by M=100 plane waves given by equations (7a) and (7b), con-
firming a quite satisfactory agreement, and, in particular, showing a field pattern confined
within a finite transverse extent for our purpose of studying reflection and refraction at an
interface.

Next we assume that the 2D Gaussian beam propagates along the direction at angle qinc

with respect to the y axis within the x–y plane, as shown in figure 1. It experiences partial
reflection and transmission when it is incident on a planar interface at y=0 between, for
simplicity, a free space with both relative permittivity e1 and permeability m1 equal to 1, and a
dielectric with e = 42 and m = 12 , so that the refractive index e=n 2 . With the help of the
Fresnel coefficients [1–11],
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for each single plane wave depicted by the electric field given in (7a) and (7b), where the
incident angle q a= -sinj j

1 and the refracted angle q a= - ( )nsinj j
t 1 , the reflected and

transmitted waves can be easily worked out to yield

Figure 2. (a) The contour plot of the electric field intensity of the standard Gaussian
beam depicted by equation (1). (b) The field intensity profile of a superposition of 100
plane waves used to mimic the beam. (c) The electric field intensity as a function of
transverse coordinates x at different longitudinal position y. The solid and dotted lines
denote, respectively, the field intensity of the standard Gaussian beam given by
equation (1) and that formed by a superposition of 100 plane waves given by (7a)
and (7b).
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are, respectively, the wave impedances in media 1 and 2,

while e0 and m0 are the permittivity and permeability in free-space.
The energy current densities in direction normal to the interface are then determined by

normal components of the Poynting vectors computed from the total fields
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where the superscript ∗ represents the complex conjugate and the subscripts 1 and 2 denote,
respectively, the incident and transmitted sides of the interface. For comparison and following
the standard textbooks [1–10], we define two quantities evaluated in terms of partial fields by
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It is remarked that the implication of S in and S re as energy flux density is not justified by its
definition.

Figure 3 shows typically the results for a beam of waist width l=W2 40 incident on the
interface y=0 at angle q = 40inc . The incident field E in, reflected field E re and transmitted
field E tr are exhibited in figure 3(a). Different from a plane wave incidence, the reflected

Figure 3. (a) The contour plot of a simulated Gaussian beam incident on plane interface
at incident angle q = 40inc . The planar interface locates at y=0. The cyan line at

l=y 10 helps to display spatial separation of incident and reflected waves. (b) and (c)
The green line, red line, and blue line denote, respectively, the absolute values of the
amplitude of E field (b) and the y component of Poynting vector (c) of the total,
incident and reflected waves at l=y 10 denoted by the horizontal cyan line in panel
(a). The complete separation in space of incident and reflected waves shows =S S1

in

( =S S1
re) for >x 0 ( <x 0), and confirms the validity to calculate the incident and

reflected power in terms of the total fields.
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beam and the incident Gaussian beam, although both appear in the incident side of the
interface, are spatially well separated from each other at a distance away from the interface, as
denoted by the horizontal cyan line. Figure 3(b) displays the absolute values of the electric
field amplitude along x parallel to the interface at l=y 10 , marked by the cyan line in
figure 3(a). The green, red, and blue curves denote the total, incident and reflected fields,
respectively. The spatial separation of the incident and reflected fields is manifest. On one
side ( >x 0) of the interface normal, the total field reduces completely to incident field, while
on the other side of the normal ( <x 0), the total field is solely determined by the reflected
field. In figure 3(c), S S,1

in and S re, defined in (12a) and (13), are presented as a function of x
at l=y 10 . It is observed that =S S1

in and =S S1
re for >x 0 and <x 0, respectively,

justifying the physical implication of S in and S re as energy flux density if they are evaluated at
a distance far enough away from the interface for an incidence of light beam with finite
transverse spatial extent.

Now we turn to the power reflection and transmission coefficients of a light beam, which
are determined in our computation as follows. Define

ò= -
+¥

( )P S x ad , 14in

0
1

ò=
-¥

( )P S x bd , 14re
0

1

ò= -
-¥

+¥
( )P S x cd , 14tr

2

where S1 and S2 are given by (12a), and the integration is evaluated at a fixed value of y far
enough away from the interface so that =S S1

in for >x 0 while =S S1
re for <x 0. It can be

easily understood that Pin characterises the energy flux incident perpendicularly downward to
the interface, since its integrand S1 is evaluated in terms of the total fields and carries the
implication of energy current density, and, in addition, as the total fields turn out to be
identical to the incident field, the energy flux comes solely from the incident wave. Similarly,
Pre describes the energy flux reflected upward away from the interface, and Ptr is the energy
flux transmitted to the second medium. All the integrands in equations (14a)–(14c) are
evaluated in terms of local total fields, so it is fully justified that so-evaluated y components of
the Poynting vectors determine the energy current densities and, consequently, their
integrations yield the powers being transported. It follows naturally that the power reflection
and transmission coefficients for a light beam, denoted by Rb and Tb, respectively, can be
defined as

= = ( )R
P

P
T

P

P
, . 15b

re

in b

tr

in

On the other hand, a light beam can be decomposed into a set of plane waves, as we have
done for a fundamental Gaussian beam in equations (7a) and (7b). As each plane wave is of
spatially infinite extent, in this case, one chooses to focus on the powers incident, reflected,
and transmitted normally on or through the unit length at the interface, which can be eval-
uated at y far away from the interface by
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where use has been made of the fact that the mixed terms with ¹ ¢j j vanish in the limit of
 ¥xm , since the integrals for such terms are finite while the denominator xm tends to

infinity. In a similarly way, one derives

Figure 4. (a) The power reflection coefficient R (solid red line) and transmission
coefficient T (solid blue line) of a 2D Gaussian beam with l=W 20 . Also shown as
dashed lines are the corresponding relative discrepancy between Rb and R (red) and Tb

and T (blue) defined by equation (21). (b) The relative discrepancy eR and eT for
incident angle q = 70inc as a function of half waist width W0 of 2D Gaussian beam,
showing that the discrepancy decays with beam width until a plateau appears due to the
residual numerical errors. (c) The power reflection coefficient R (red) and transmission
coefficient T (blue) of a 2D Gaussian beam versus the beam width at q = 60inc ,
suggesting that R and T of a beam approach asymptotically to those of a single plane
wave as the beam width tends to infinity. The horizontal dashed green lines display R
and T of a single plane wave at the same incident angle qinc evaluated based on the
standard procedure in most textbooks, see, e.g., [1–5].
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introduced in standard textbooks [1–11], and r t,j j are Fresnel coefficients given in
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It is therefore concluded that the power reflection and transmission coefficients of a beam
with finite transverse extent are the weighted sum of the corresponding coefficients of the
constituent plane waves that make up the beam.

We have calculated Rb and Tb given by (15) as well as R and T given by (18) for 2D
Gaussian beams with different beam widths. Typical results are shown in figure 4(a) for the
case with l=W 20 . The results for Rb and R (also for Tb and T) as a function of incident angle
qinc are graphically indiscernible, as can be seen from the relative discrepancy eR and eT

defined by

e e=
-

=
-∣ ∣ ∣ ∣ ( )R R

R

T T

T
, . 21R

b
T

b

The discrepancy between Rb and R (and also between Tb and T) originates from the numerical
integration as well as the approximation of the Gaussian beam by a discrete set of plane
waves, in which the residual fields away from the beam axis remain oscillating around zero
rather than decay exponentially as a standard Gaussian beam should do. The greater
discrepancy at smaller incident angle qinc arises from the larger residual fields near x=0
since the incident and reflected waves come closer in this case, resulting in a somewhat
discernible overlap effect. The more serious inconsistency at larger incident angle qinc comes
similarly from the overlap effect between the incident and reflected waves due to larger
oblique angle. Besides, it stems also from the fact that, in our calculation, we have removed
some plane wave components that propagate upward from the plane wave spectrum of the
incident beam. For a beam with greater beam width, the discrepancy can be decreased, since a
wider beam has all its constituent plane waves more bent to the direction of beam propagation
and thus our simulation by omitting upward wave vectors generates more accurate results.
Figure 4(b) evidences this tendency, where the discrepancy decreases with the beam width is
exhibited. And finally, in figure 4(c) we show a typical example for the power reflection and
transmission coefficients of the 2D Gaussian beam as a function of beam width. It is manifest
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that as the beam width increases, the power reflection and transmission coefficients approach
to those computed using method introduced in standard textbooks [1–10] for a single plane
wave at the same incident angle qinc. As a result, the power reflection and transmission
coefficients of a single plane wave serve actually as asymptotes for the corresponding
coefficients of a light beam as the beam width is expanded infinitely.

3. Summary

To summarise, the Poynting vector is, in general, interpreted as energy current density only
when it is evaluated in terms of the total fields. This causes some confusion among students
when discussing the power reflection and transmission coefficients of a single plane wave at a
planar interface. Because the Poynting vectors therein are evaluated in terms of partial fields,
namely, incident and reflected fields, respectively, instead of the total fields, they may not be
fully justified as energy current densities and the incident and reflected powers based on so
obtained Poynting vectors appear confusing. Besides, as a plane wave is actually an ideal
model that does not exist in the real world. A question follows naturally about the physical
implication of the reflection and transmission coefficients of a plane wave. We propose to
resolve this ambiguity and provide a clear physical meaning by computing the power
reflection and transmission coefficients of a light beam with limited extent, taking a 2D
Gaussian beam as an example. Due to the finite transverse spatial extent of a light beam, on
both sides of the interface normal, the total fields reduce, respectively, to those of the incident
and reflected waves, and the physical implication of the Poynting vector calculated based on
these two individual parts is thus truly justified. Consequently, the energy fluxes for the
incident, reflected, and transmitted waves can be unambiguously defined. It is demonstrated
that the power reflection and transmission coefficients of a beam turn out to be the weighted
sum of the corresponding coefficients of all the constituent plane waves making up the beam.
The power reflection and transmission coefficients of a single plane wave can be in turn
understood physically as the asymptotes for the corresponding coefficients of a light beam
when its width is expanded infinitely. They serve practically as an excellent approximation to
the power reflection and transmission coefficients for a real light beam, since in practice the
beam widths W0 are typically several hundreds times of operating wavelength.
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