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In dispersive media the phase velocity, group velocity, energy velocity, signal velocity,
relativistic velocity constant, and ratio-of-units velocity are usually not useful concepts for
wave packets. The centrovelocity has been suggested as a measure which overcomes many of
the objections to the first six. We describe yet another, based on the cross-correlation of the
original and received wave packets, which is shown to be useful in time-of-flight
measurements in weakly and strongly dispersive media; absorption and amplification are
readily accommodated. Applications for specific examples of wave packets in magnetoplasmas

are presented.

I. INTRODUCTION

The subject of wave propagation in dispersive media
has attracted the attention of scientists, mathematicians,
and engineers for many years. Applications today are
abundant, from solid state physics to water waves and sound
waves to lasers and high-speed pulse communication
through rocket exhausts, interplanetary plasmas, and
fiber-optic light guides.

Dispersive propagation has been a recurrent theme in the
pages of this Journal. In a previous paper! we presented a
heuristic calculation of pulse compression in a dispersive
system, which is the conceptual inverse of the usual dis-
cussion of pulse spreading,?-> and we stressed the unity of
the physically different phenomena of dispersive propaga-
tion and diffraction as forms of generalized diffraction in
terms of the Fourier transform. For completeness here we
mention some of the earlier papers listed in Ref. 1: Craw-
ford6-8 has reported some especially interesting acoustic
effects; Merrill® has presented a BASIC computer program
for study of dispersive pulse propagation; and a series of
papers'®-'3 have described experiments suitable for student
use, including a backward wave system (phase velocity and
group velocity in opposite directions).

In addition to these, York!4 has presented a graphical
approach to dispersion; Baird!? has discussed the very useful
concept of moments of a wave packet; Prestwich!® noted
a precise definition of group velocity; Jones!” reemphasized
the mathematical analogy between diffraction and dis-
persive propagation; and Berry and Greenwood!8 reiterated
the ubiquity of the sine wave in dispersive linear systems,
as the only waveform that preserves its shape while propa-
gating. Guillemin!® earlier had written almost poetically
of the sine wave “. . . the sinusoid was singled out as the one
that shall forever be king and ruler. . . . No other periodic
Sfunction can claim such distinction! . . . There is something
very peculiar—yes, almost uncanny—about the sinusoidal
waveform that gives it the property of remaining unaltered
when another sinusoid having the same period but any
amplitude and random phase is added to it. . . . No other
periodic function can lay claim to this property either. . . .
The sinusoid is unique in that its shape is invariant to inte-
gration or differentiation, no matter how often either op-
eration may be repeated. . . . the sinusoid is the building
block from which anything else can be constructed. . . . the
sinusoid is nature’s building block also.” Healy and Power?®
treated the subtle problems of crossing symmetry in deriving
dispersion relations for optically active media; Dean?! noted
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a simple oscilloscope demonstration of group velocity; and
Rader?2 called attention to the dispersive effect of absorp-
tion, a point to which we shall return later. Christy?3 re-
viewed the classical theory of optical dispersion, and Khan
and Mahendra?4 calculated exact optical indices in the
resonance region. The universality of Kramers-Kronig
relations was reviewed by Holbrow and Davidon,2% Shar-
noff,26 and Scott.2” The subject of dispersive propagation
is currently of great interest and activity,28-36 and there are
possibilities of applications in models of talandic phenomena
in socio-psychological systems.3”

It would be futile at present to argue which is the most
fundamental constant of nature, but if such a debate oc-
curred, certainly a good case could be made for the velocity
of light, the study of which led to our contemporary views
of the universe. There are six rather common measures of
the velocity of light; Smith3® has suggested a seventh which
overcomes many limitations of the first six. The purpose of
this paper is to describe yet another velocity of light which
has become practical only because of modern electronic
instrumentation and the availability of digital computers.
Several advantages and results of applications of the eighth
velocity will be presented.

The concept of the eighth velocity is not new, but it is not
widely known. It is used in some advanced radars and, for
mechanical waves, in certain aspects of seismology and
acoustics.

II. SEVEN VELOCITIES OF LIGHT
A. The first six

Six measures of the velocity of light are well known
(though often only by name): (1) phase velocity, (2) group
velocity, (3) energy velocity, (4) signal velocity, (5) rela-
tivistic velocity constant, and (6) ratio-of-units velocity. The
first two are perhaps the most familiar, but there are several
difficulties associated with them. For example, the group
velocity in a region of anomalous dispersion may change
sign or exceed the velocity of light in vacuum,*3° and for
an electron in a crystal lattice the group velocity is found
by the same relationship as that for free electrons, v, =
h~1Vyre(k), obscuring the fact that there is a periodic
motion like an inchworm superimposed on this average
motion.*? Russakoff4! has clarified some of the points in-
volved in deriving the macroscopic Maxwell equations from
the microscopic equations of electrodynamics, emphasizing
that physical insight must accompany the mathematical
procedures of taking temporal and spatial averages.?
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Fig. 1. Brillouin or w-k diagram. For a monochromatic plane wave, phase
velocity at frequency w is w/k. Group velocity is dw/dk. For the particular
dispersion relation shown here, w/k becomes infinite when dw/dk goes
to zero.

The phase velocity is only defined for a monochromatic
wave; for the more interesting case of a wave packet there
is no unique value for phase velocity. The group velocity,
dw/dk evaluated at k¢ (the mean value of the wave num-
ber), and the phase velocity, w/k for a plane wave, may even
be in opposite directions, as shown graphically on the
Brillouin or w-k diagrams in Figs. | and 2.

Smith3? has reviewed and clarified the basic character-
istics and concepts of the velocities of light; the reader is
referred to his paper for detailed discussion and critical
evaluation of the first six.

B. The seventh: centrovelocity

Smith3® proposed a new definition of the velocity of light,
the centrovelocity, defined by

Ue = ’V[f_:m tE?(r,t) dz]
x [f_:w E(r,1) dt]_l I", 1)

where E(r,t) is the real amplitude of the microscopic elec-
tric field of the radiation field.#2 This velocity describes the
motion of the first moment of the temporal intensity or
energy distribution in a manner analogous to the center-
of-mass velocity in mechanics. It is well behaved in a region
of anomalous dispersion and has a close connection with the
flow of energy. It provides an experimentally measurable
quantity, compatible with time-of-flight methods. It is
apparently useful in anisotropic media since different
centrovelocities can be defined for two states of polarization
in orthogonal planes or for two states of (contrarotating)
circular polarization. .

Since the centrovelocity depends on the distribution of
energy in a pulse, it suffers from some of the objections
expressed for the energy velocity and the signal velocity; i.c.,
there may actually not be any energy arriving at the time
specified by the centrovelocity, at which time half of the
energy has already arrived and half is still expected. This
is analogous to the fact that, if the earth were blown to
pieces by a thermonuclear device, the center of mass would
still serenely orbit the sun.

Secondly, the operational definition, Eq. (1), is carried
out in the time domain and involves a difficult computa-
tional procedure on a computer, which would be required
for any real-world problem.
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III. THE CORRELATION VELOCITY

A. Concept of cross-correlation

We digress momentarily to review the process of cross-
correlation, which is basic to what follows. The idea of
pattern-matching by sliding one object over another has its
origin in antiquity. Perhaps some persons still obtain cor-
relations by sliding chart recordings or oscilloscope photos.
This idea can be made quantitatively precise by defining
the cross correlation for periodic functions as

Ry r)=T"" j;TEl(t)Ez(t + 7) dt, 2

where T is the period of £ and E,, E| is one waveform and
E,(t + 7) is another waveform shifted by the delay time
parameter 7. The maximum of the cross-correlation R 5(7)
occurs when £, is shifted so that it most closely matches E .
Clearly, this idea is not restricted to functions of time, but
it is applicable to any variable. If £ and E; are the same
waveform, Eq. (2) yields the autocorrelation function.

The behavior of Eq. (2) can be illustrated graphically by
a simple device. Suppose one takes a piece of graph paper
and outlines a pulse, say, 5 units wide and one unit high with
the left (earliest) edge of the pulse at, say, 7 units to the right
of the origin. Then one makes a transparency of the graph
and proceeds to slide the transparency in small increments
across the original graph. At each increment one measures
the overlap product and plots this as a function of the in-
crement number. This process is shown in Fig. 3, and Table
[ contains the results. What we have described is discrete
one-dimensional cross-correlation. The universal result that
we have obtained is that the cross-correlation of a rectangle
with a similar rectangle is a triangle with its apex located
at the time delay of the leading edge of the unshifted rec-
tangle. The cross-correlation of any other waveforms will
yield other functions, but the peak will occur at the time
delay. Although it is perhaps not immediately apparent,
correlation is a powerful technique for discovering hidden
periodicities and for digging signals out of noise. Correlation
is not limited to periodic functions, of course, but aperiodic
functions are probably not of importance for the problem
faced here.

The process of shift, multiply, and add that we have de-
scribed is time-consuming even on a digital computer.
Thanks to the fast Fourier transform (FFT) it is now pos-
sible to carry out high-speed correlation (and convolution)
by means of the Wiener-Khintchine theorem, which relates
the cross-correlation to the inverse Fourier transform of the
cross spectral density,

2

Fig. 2. Brillouin diagram for a dispersion relation with a backward wave.
Phase velocity w/k is positive and group velocity dw/dk is negative.
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Fig. 3. Correlation process with two similar rectangular waveforms. (a)
Original waveform replica (E2) is time-shifted across propagated wave-
form (E)). (b) Overlap product = 2 for = = 4. (¢) Overlap product plotted
as a function of time shift. (See Table I for data.)

Ria(r) = (2m)~! j::mAl(w)Az*(w)e"de. (3)

For Eq. (3) one uses the FFT on E | and E, to find 4, and
Aj; then one forms the product 4;4,* and applies the in-
verse FFT to this cross spectral density. Use of Eq. (3) in
lieu of Eq. (2) results in great savings in computer time.

B. Correlation and velocity of light

We can view the preceding example as if the original
pulse were time-shifted across the transmitted pulse at the
receiving site. Since the cross-correlation peaks at the value
of 7 corresponding to the leading edge of the pulse that has
traversed a vacuum distance d, it is reasonable to define the
correlation velocity as

Ucor = d/Tmam (4)

where Tmay is the time delay at which R »(7) achieves its
maximum value.

We have explicitly defined v, as the ratio of the prop-
agation distance to the time delay; we shall investigate its
properties for dispersive propagation and we shall show that
it yields usable results in highly dispersive and absorptive
situations in which the original pulse becomes so distorted

Table I. R, ,(7) for two similar rectangular pulses [data from Fig.
3(b), plotted in Fig. 3(c)].

T Overlap product T Overlap product
0 0 8 4
1 0 9 3
2 0 10 2
3 1 11 1
4 2 12 0
5 3 13 0
6 4 14 0
7 S 15 0
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Fig. 4. Dispersion and absorption of a rectangular pulse envelope con-
taining 50 cycles of a sine wave; propagation in the ordinary mode. Vacuum
propagation is shown in rectangular outline. w,/we = 0.9 and v/w = 0.001.
From bottom to top, d/A¢ = 20, 40, 60, 80, and 100 vacuum-equivalent
wavelengths of the central frequency of the original pulse. (See Table 11
for data.)

that it is not readily recognizable. Our results will be com-
puted in the absence of noise, an idealized situation, but the
use of veer Is not restricted to such a case. In fact, vy 18
relatively immune to the natural statistical fluctuations of
the medium and random signals and noise. Suppose that all
of the noise and fluctuations can be represented by a ran-
dom electric field E,(z). Then the spectrum of the received
wave form is given by

ar@ = [ TEW +E@le i (9)

or
A1 (@) = A1(w) + 4, (). (6)
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Fig. 5. Cross-correlation of original and received waveforms for the same
conditions as in Fig. 4. Vacuum propagation is shown in triangular outline.
(See Table 11 for data.)

After substitution of Eq. (6) into Eq. (3) one obtains
Ry (7)
+ >
=0 T @) + A @) Ak @eisr du (1)

= Ry 2(7) + R, 5(7). (8)

In Eq. (8) the cross-correlation of the random field with the
original pulse will ordinarily be vanishingly small compared
with R} »(7), so that measurements may be carried out in
the presence of a signal-to-noise ratio that otherwise might
be intolerable.

C. Applications of correlation velocity

We have already shown36 that, for Faraday rotation of
pulsed electromagnetic waves in a magnetoplasma, the
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cross-correlation of the original and received signals can be
more useful than the electric fields themselves in measuring
the rotation of the plane of polarization of an initially lin-
early polarized wave packet. For a concrete example here
we shall also choose pulses in 2 magnetoplasma, a dispersive,
anisotropic, nonreciprocal medium with several resonances,
cutoffs, and modes of propagation, and with broad-band
(collisional) absorption and narrow-band (resonant) ab-
sorption. In such a medium characterized by an antisym-
metric permittivity or conductivity tensor, Murphy’s law
can be considered to be valid until proven otherwise. It
follows that, if the correlation velocity is useful in such a
complex medium, it may also be useful in simpler media.

For a cold magnetoplasma governed by the Appleton-
Hartree dispersion relation one may discuss wave propa-
gation in terms of the thirteen distinct regions on the
Clemmow-Mullaly-Allis diagram. For the first example
we select the simplest case of propagation perpendicular to
B, with E parallel to By, which is usually termed the ordi-
nary mode. For this case the magnetic field has no effect
and the dispersion relation is given by

ki(w) = (w/c) {1 — [wp¥/(? + v2)]
—ivwp?/[w(w? + v [1V2, (9)

where k +(w) is the propagation factor, w is the radian fre-
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Fig. 6. Effects of collisional absorption on time evolution of ordinary wave.
d /X0 = 100, wp/we = 0.91, and (from bottom to top) v/wo = 0.001, 0.003,
0.004, 0.005.
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Fig. 7. Cross-correlation of original and received ordinary waves for the
same conditions as in Fig. 6. Collisional absorption becomes apparent in
decreased correlation and shorter time delay. From bottom to top, cross-
correlation (and real time delay in wor units) are: 0.43081 (1510.32),
0.12301 (1507.18), 0.06593 (1495.40), 0.03559 (1492.26) and for »/wg
= 0.006 (not shown here), 0.01924 (1489.11).

quency, ¢ is the velocity of light in vacuum, w,2 = ne/meg
is the square of the electron plasma frequency,i = v —1,
and v is the effective electron-heavy particle collision fre-
quency for momentum transfer given by*3

—mup?

Xexp(2KT )du. (10)

The electron charge, density, mass, and velocity are given,
respectively, by e, n, m, and v; ¢ is the vacuum permittivity,
N is the density of heavy particles, « is Boltzmann’s con-

stant, T, is the absolute electron temperature, and g,,(v)
is the collision cross section for momentum transfer.

In Fig. 4 we show the results of a computer analysis of
pulse propagation in accordance with Eq. (9). The rectangle
indicates the result for vacuum propagation. In alil of the
figures, we indicate normalized time in units of wet and
normalized time delay in units of wg7. The ordinate labels
on all plots indicate normalized propagation length d/ X,
plasma frequency w,/wo, collision frequency »/wo, and cy-
clotron frequency w./we. In the preceding, wg and Ag refer
to the central frequency of the original pulse and the cor-
responding wavelength, w, = eBg/m, is the electron cyclo-
tron frequency, and By is the static magnetic field. Thus
propagation length is expressed in vacuum-equivalent
wavelengths of the central frequency of the original pulse,
and the plasma parameters are normalized to the central
frequency of the original pulse. For example, the ordinate
label on the lowest plot in Fig. 4 indicates, respectively,
normalized propagation length, plasma frequency, collision
frequency, and cyclotron frequency in the sequence 20-
0.90000-0.001-0.00000.

The magnetic field has been set to zero for the ordinary
wave because it does not enter into the dispersion relation,
Eq. (9); this dispersion relation is, in fact, the same as that
for an unmagnetized plasma. In Fig. 4 we can see the pulse
become progressively more distorted as it propagates farther
into the magnetoplasma. The qualitative observation of
distortion is confirmed by the cross-correlation of the re-
ceived and original pulse plotted in Fig. 5; the peak value
of the cross-correlation decreases and the spread increases.
The qualitative ideas expressed earlier concerning the other
measures of pulse velocity are apparent in Fig. 4, except that
we have not included noise. In the real world the base line
would not be zero in Fig. 4; it would obscure the leading and
trailing edges of the pulse in an unpredictable manner. In
contrast, the peak of the cross-correlation in Fig. S would
be practically unaffected in position even though its mag-
nitude might decrease slightly, depending on the signal-
to-noise ratio.

In Fig. 4 the high frequencies arrive first, followed by the
main body of the wave packet, and the slower, lower
frequencies bring up the rear. How does one say when such
a distorted wave packet has “arrived”? In Fig. 5 it is easy
to determine the peak values which mark the time delays
for use in Eq. (4).

In Eq. (9) there is a wave cutoff when k4 (w) ~0atw =
wp in the absence of collisions, and this is the major cause
of dispersion in this mode. In Figs. 6 and 7 we show the
dispersive effect of broad-band absorption due to elastic
collisions. The plasma parameters are the same as in Figs.
4 and 5, but in Figs. 6 and 7 the varying parameter is ». For
the values of parameters in this example the effect of ab-
sorption is to increase the speed of the wave packet very
slightly. This is readily apparent in cross-correlation but not
so obvious in the waveform itself.

In Fig. 8 we plot the waveform for propagation in the
extraordinary mode, i.c., k L. Bgand E | By, for the same
plasma parameters as in Fig. 4. We now see the effect of the
magnetic field, which in our example has w, = 0.1w,,. The
dispersion relation for the extraordinary mode is given
by

k—(w) = (w/c)(1 = wp2[(w? — wp2)(w? — wp? — w.2) + v2e?] [w2(@? — wp? — w2 = ¥1)? + v22w? — w,?)?] 7Y}

— ivwp?wpt + ww? — 20,2 + w2 + v Jfw[wHw? — wp? — w2 = p?1)? + »2(2w? — wp)AITHY2 (1)
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Fig. 8. Dispersion and absorption of rectangular pulse envelope for
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4 and 5. (See Table H for data.)

In the absence of collisions there is a resonance when k_
— o at the upper hybrid frequency wyp = (wp? + w272
in addition to this resonance there are cutoffs (k— — 0) at
wp?/wo? + w./wo = 1. All contribute to dispersion. In the
extraordinary mode there is a longitudinal component of
the electric field as well as a transverse component. Thus
the wave is, in general, elliptically polarized in the plane
perpendicular to the static magnetic field. Here we confine
our attention to the transverse component. In Fig. 9 we plot
the cross-correlation for Fig. 8. The decorrelation of the
propagating pulses is due to the absorption as well as the
dispersion of the medium; the magnetic field in the ex-
traordinary mode increases both effects.

In Figs. 4 and 8 it is difficult to say when the pulse arrives,
but there is no effort in determining the peak value of the
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cross-correlation in Figs. 5 and 9. If noise were present in
Figs. 4 and 8, it would raise the base line and obscure the
lower part of the pulse, making the problem of using the
waveform even more difficult. Use of the cross-correlation
is not hampered by changes in the base line because we are
only interested in the time when the peak occurs, not the
value of the peak or the area under the curve.

In Table I we show the pertinent data from Figs. 5 and
9, for which a word of explanation is in order. Our data are
contained in an array of 2'2 points, and although the figures
are plotted as the envelopes of the waveforms and cross-
correlations for purposes of graphic clarity, the computa-
tions are based on samplings of each cycle of the wave. For
economic reasons our printout selects only every sixteenth
point of the envelope, which results in an uncertainty in the
peak cross-correlation time delay of +£15/4096, or about

T T T
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Fig. 9. Cross-correlation of original and received extraordinary wave for
the same parameters as in Figs. 4, 5, and 8. (See Table II for data.)
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Table II. Normalized time delay and cross-correlation tor propagation perpendicular to B,. wp/wU =0.9,v/w, = 0.001, wy/w, = 0.09, pulse

width = 50 cycles.

Ordinary wave

Extraordinary wave

Vacuum propa- U e et e et e Ordinary Extraordinary
gation, real time Plasma Plasma Plasma Plasma wave maximum wave maximum
d/x, WoTmax real time 4096 time real time 4096 time R, , R,
20 125.66 278.03 354 363.64 463 0.80393 0.71314
40 251.33 567.84 723 773.62 985 0.69238 0.59063
60 376.99 871.01 1109 1174.96 1496 0.63114 0.49711
80 502.65 1139.61 1451 1541.74 1963 0.54149 0.39967
100 628.32 1430.21 1821 1929.72 2457 0.44887 0.31690

0.37%, and this is reducible without limit by means of a
larger array and a higher resolution in the printout. In Table
[1, **4096 time” is computer printout time and “real time”
is w/4 times “4096 time.” As an example of the use of Table
11, consider a microwave signal with center frequency in the
X band, wg = 27 X 1010 Hz and Ay = 2mc/wo = 3 X 1072
m. Then for d/A\g = 100, we have d = 3 m. For vacuum
propagation through 3 m, 74, = 27(100) /(27 X 1010) =
1078 sec. For the plasma parameters in Table I, for the
ordinary wave we find 7,,x = 1821 (x/4) /(27 X 1010) =
2.28 X 1078 sec and for the extraordinary wave 7, = 2457
(r/4)/ (27 X 10'9) = 3.07 X 10~¥ sec. The corresponding
velocities are: ordinary wave, 800c/1821; extraordinary
wave, 800¢/2457. These and other data from Table Il are
plotted in Fig. 10.

As a final example of propagation across the magnetic
field in a highly dispersive and absorptive medium we plot,
in Figs. I'l and 12, respectively, the time delay and cross-
correlation for a frequency sweep through the upper hybrid
resonance. Since we normalize all parameters with respect
to the central frequency of the original pulse, a frequency
sweep results in variation of all normalized parameters.
Such a frequency sweep is common in the laboratory and
in ionospheric sounding, topside and bottomside.

For propagation parallel to the static magnetic field the
dispersion relation is given by

kir(w) = (w/c)fl — wpz(w + w)/[w(w £ we)? + v2o]
—ivwp?/[w(w + w.)? + v20]}!/2, (12)

1.0

I Ny

L 0

il x &

Veor/C

70 40 60 80 100
NORMALI ZED
PROPAGATION LENGTH

Fig. 10. Correlation velocity of 50-cycle wave packets propagating in
vacuum and in the ordinary and extraordinary modes (perpendicular to
the static magnetic field). w,/wo = 0.9, v/we = 0.001, and w/wo = 0.09.
Data taken from Table Il and Figs. 5 and 9. V—Vacuum propagation;
O—ordinary wave; X-—extraordinary wave.
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where k; -(w) is the propagation factor, and the upper sign
refers to the left circularly polarized wave for k;(w) and the
lower sign refers to the right circularly polarized wave for
k,(w); the right circularly polarized wave rotates in the
same sense as the electrons rotate. In the absence of colli-
sions there is a resonance for k,(w) at the electron cyclotron
frequency.

Two rather interesting features of Eq. (12) deserve
mention. First, when the left and right circularly polarized
wave packets mostly overlap, there is Faraday rotation of
the plane of polarization due to the difference in phase ve-
locity of the two modes. As a consequence of the v X By
force the direction of rotation is the same whether the wave
packet propagates parallel or antiparallel to Bo; i.e., the
polarization does not “unscrew” when the direction of
propagation is reversed. Because of the difference in ab-
sorption of the two modes the total wave packet rapidly
becomes elliptically polarized in the plane perpendicular
to By. Second, for large values of plasma frequency and
cyclotron frequency the so-called whistler mode can prop-
agate; in solid state physics, waves in this mode are known
as helicons. The whistler mode was named for the de-
scending whistle which is heard in the VLF part of the
spectrum when such waves are initiated by lightning strokes
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or nuclear explosions. Actually, two values of w./wg exist
for a given group velocity, so that the spectrum analysis of
the received whistler shows a characteristic “nose” when
plotted as a function of time.*

In Fig. 13 we plot the x component of the wave packet
as it propagates along the magnetic field. The coordinate
system is such that the original pulse is polarized along the
x axis and By is along the z axis. The y component is plotted
in Fig. 14. One observes the decrease of the x component
and the growth of the y component. The cross-correlations
for this case are plotted in Figs. 15 and 16, and it is apparent
that the x component decorrelates due to rotation as well
as dispersion and absorption. The increasing correlation of
the y component is due to rotation dominating the effects
of dispersion and absorption. For Figs. 13-16 the Faraday
rotation and ellipticity of the central frequency of the
original pulse are shown in Table I11.

In Fig. 17 we show the separation of a linearly polarized
pulse into two circularly polarized wave packets, and Fig.
18 shows the cross-correlations. The faster wave packet is
left circularly polarized; the slower is right circularly po-
larized. The resolution of the pulse into two wave packets
is much more clear in the cross-correlation than in the
waveform itself. The right circularly polarized packet suf-
fers more absorption than the left because the right rotates
in the same sense as the electrons.
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Fig. 13. x component of waveform for longitudinal propagation. w/wo
= 0.9, v/wp = 0.001, w/wo = 0.002, and pulse width = 50 cycles. Note
decrease of x component, partly due to absorption but mostly due to
rotation.

In Fig. 19 we plot the time delay of the maximum
cross-correlation as a function of (w./wg)~!. The inverse
of the normalized cyclotron frequency was chosen for the
abscissa for scale convenience and to permit comparison

Table III. Normalized time delay and cross-correlation for propagation parallel to B,. wplwy = 0.9, v/w, = 0.001, we/w, = 0.002, pulse

width = 50 cycles.

Maximum x

» component X component Maximumy Faraday

d/)x(, 4096 time 4096 time cross-correlation cross-correlation rotation? Ellipticity2
20 372 354 0.18632 0.78187 13.3786 0.0010
40 725 723 0.31220 0.61830 26.7573 0.0019
60 1103 1109 0.40749 0.48117 40.1359 0.0029
80 1457 1455 0.43387 0.32444 53.5146 0.0039

100 1835 1765 0.41109 0.17861 66.8932 0.0048

a Faraday rotation (in degrees) and ellipticity computed for w,,.
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with group velocity results of Vidmar and Crawford.4> The
high-speed Fourier components comprising the “nose” of
the whistler are very evident. The high-frequency branch
is observed with scans of wide bandwidth in the ionosphere,
but since the lower frequency branch-lies in the audible
region, the received signal was described in early papers as
having a chirp with a descending frequency.

IV. SUMMARY AND CONCLUSIONS

We have shown that the correlation velocity provides a
reliable measure of the velocity of a wave packet in a dis-
persive, absorptive medium, with nonreciprocal anisotropy.
The correlation velocity is explicitly defined in terms of
length/time, and overcomes many of the objections to
previously suggested measures of velocity. All of the com-
putations here have been for a sinusoidal wave with a rec-
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tangular pulse envelope of fixed width. This is a very com-
mon waveform, such as might be used by students in a lab
or field experiment; it is also the fundamental waveform of
simple radars and binary-coded communications. Bats,
dolphins, killer whales, and sophisticated radars and sonars
use more complicated waveforms. The question naturally
arises concerning the combined effects of waveform (or
spectrum), in a particular dispersive situation, on the cor-
relation velocity. This is a topic of considerable interest; the
coding of waveforms to attain specific objectives in terms
of cross-correlations is under active study. In radar, for
example, one is faced with two-dimensional cross-correla-
tion functions in a time-frequency space, and it is often
required to move the distribution of the cross-correlation
function about. In underwater sound propagation where the
dispersion relation is often well known some success has
been achieved in designing “matched signals™ instead of
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“matched filters.”! Some of the effects of pulse width
(spectrum width) can be seen in Figs. 3 and 4 of Ref. 35, in
which the particular dispersive situation produces a slightly
greater velocity as the pulse width decreases (as the spec-
trum width increases). For this case the slower, lower
frequencies are diminished relative to the faster high
frequencies, resulting in a speedier arrival of the pulse.
Why do we need to define a velocity, since it may, be
slightly dependent on pulse shape? First, we often need to
determine transmission path length by & = "v”’t in situations
where we can calibrate or compensate for pulse shape ef-
fects; second, we are often interested in changes in “v” for
a fixed path in order to relate this to changes in the medium.
As an example, we have shown in Figs. 6 and 7 how the fine
details of the dispersive effect of absorption,22 manifested
here as a small increase in veor, can be extracted from the
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Fig. 16. Cross-correlation of original signal and received y component
for same conditions as in Fig. 14. (See Table 111 for data.)
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cross-correlation function although it is obscured in the
waveform itself.

We have also shown that the correlation velocity has high
immunity to noise and natural fluctuations of the medium
which tend to introduce error into previously used velocities.
For example, consider the centrovelocity in the presence of
noise and statistical fluctuations represented by a random
field E,(r,1), as in Eqs. (5)-(8). Since the total field at the
detector is now E(r,?) + E,(r,?), the centrovelocity given
by Eq. (1) becomes

v = Iv[(f_:mz[E(r,z) + E,(r.0)]? dz)

X (f_:m (E(rt) + E,(r.0)]2 dt)_l]l_l. (13)
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In Eq. (13) one sees that v, would be generally biased by
the presence of noise, resulting in a different value than it
would achieve in the ideal noise-free case. Signal averaging
prior to computation with Eq. (13) would, of course, be
beneficial but signal averaging would enhance the corre-
lation velocity even more if it were done before use in Eq.
(2) or (3). As an extreme example one might obtain a value
for v, even in the absence of a signal, using Eq. (13). Fur-
thermore, signal averaging has no meaning for a single
event; Tolstoy shows an actual case in which not only the
time of arrival of a seismic pulse thought to originate at an
underground explosion, but its very existence, was deter-
mined by cross-correlating a signal plus noise with a replica
of an anticipated waveform (in this case, a chirp).#¢

In cases where pulse stretching and pulse repetition rate
are such that the trailing edge of a pulse overlaps the leading
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edge of another pulse, signal averaging for the centrovelo-
city is of help only in removing noise. Correlation velocity,
on the other hand, is relatively unaffected by pulse overlap.
This effect can be seen in some of the previous figures.

It is intuitively clear that there is a close connection be-
tween the correlation receiver that we have discussed here
and the matched filter that we have discussed earlier.! In
fact, a cross-correlation system is often an optimum reali-
zation of a matched filter. A large computer is no longer
necessary; a digital-processing oscilloscope makes an ac-
ceptable correlation receiver.*’” Remarkably, a single in-
tegrated circuit that will perform cross-correlation has just
been introduced,*® opening up interesting possibilities for
inexpensive student experiments.*?

Finally, there are two other practical aspects of the cur-
rent interest in dispersive propagation. Very high rates of
information transmission require very short pulses associ-
ated with such broad spectra that they almost always en-
counter dispersion. Also, very short pulses have such a low
spectral energy density that they are hard to find unless you
know what to look for (hence, cross-correlation). A pulse
of 1 nsec, pulsed a thousand times per second, is on for less
than 32 sec per year, and a 1-psec pulse is almost never
there!
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