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A physical explanation for group velocity is given for the very common case of group velocity less
than the phase velocity with negligible absorption. The underlying physics is that a
nonpropagating or immobilized energy density must be present in the medium associated with the
presence of the wave field. The individual waves carry energy forward in a wave packet and
energize the medium in the forward portion of the packet. In the rear portion of the packet, the
individual waves grow at the expense of the energy immobilized in the medium, the particle
motions in the medium being in phase with the wave field and therefore capable of generating new
waves in phase with the group of waves that produced them. The physics is conveniently
described in terms of deep water waves, but the principles involved apply equally well to other
dispersive, nonabsorbing media, including plasmas, dielectrics, and waveguides. The flux of
energy can be expressed as the phase velocity times that part of the energy density that propagates
with the individual waves or, averaged over a wave period, as the total energy density (including
the energy immobilized in the medium) times the group velocity. This eliminates the confusion
commonly present when an attempt is made to interpret the Poynting flux for electromagnetic
waves in terms of the product of an energy density and the group velocity. The group velocity is

just the weighted average velocity.

Group velocity in wave fields is well described math-
ematically in terms of interference between frequency com-
ponents that propagate with slightly different velocities.
However, this conceals the basic physical cause of the phe-
nomenon. Considerable insight into the physics of propa-
gation of a wave packet or group can be provided, at least
for the case of normal dispersion in nonabsorbing media,
by considering energy densities and fluxes. The purpose
here is not to set forth a discussion of group velocity appli-
cable to all situations, but rather to describe its physical
cause in a relatively simple but frequently encountered sit-
uation—that of normal dispersion in a nondissipative me-
dium.

The basic cause of group velocity in the very commonly
encountered case of normal dispersion with negligible ab-
sorption is that, in order for individual waves to propagate,
the medium has to be energized with energy that does not
propagate with the individual waves. This nonpropagating
energy is proportional to the energy that does propagate,
and it appears in different forms in different types of waves
(e.g., deep water waves and electromagnetic waves) and in
different media (e.g., dielectrics and plasmas). With nor-
mal dispersion, the group velocity is less than the phase
velocity, and within a group of waves the individual waves
move forward in the group, dying out in the forward por-
tion of the group while new waves form and grow in the
trailing portion of the group. The waves in the forward
‘portion of the group advance into regions where the medi-
um has not yet been energized sufficiently to correspond to
the amplitude of the approaching waves; here, the wave
field attenuates by conversion of propagating into nonpro-
pagating energy. As individual waves move forward in the
trailing portion of the group, excess organized energy
would be left behind in the medium except for the fact that
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it is converted into new waves. These new waves are in
phase with the wave field that preceded them, the phase of
the particle motions in the medium having been deter-
mined by the wave field that has already passed by. This
explains why a wave packet, which is a localized phenome-
non, can be described in terms of wave trains of infinite
extent.

There is an ambiguity in the term propagation; it may
refer to the propagation of individual waves or to the prop-
agation of a group of waves—a wave packet. Here, we use
the term to mean wave propagation, which occurs at the
phase velocity. The term is also appropriately applied to
the movement of a wave packet, which occurs at the group
velocity, but here we will avoid such usage. Failure to rec-
ognize the ambiguity can lead to confusion.

I. DEEP WATER WAVES

We will describe the phenomenon of group velocity of a
wave group first in terms of deep water waves, which are
easily observed; the same concepts apply to electromagnet-
ic waves, although the ratios of propagating to immobilized
energy, and of phase velocity to group velocity, are differ-
ent. The particle motions in small-amplitude deep-water
waves are circular, and the particle velocities remain con-
stant in magnitude as the individual waves pass by. The
velocities decay exponentially with depth, the decay length
being equal to the wavelength divided by 27. Thus the
waves in a constant-amplitude portion of a wave packet
have the peculiar property of having no variation in kinetic
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energy W, in the direction of propagation, and the progress
of the individual waves involves no average forward trans-
port of kinetic energy. The energy that is transported by the
individual waves is potential energy W,, which has maxi-
ma at the wave crests and troughs. The ratio of phase veloc-
ity v, to group velocity v, is 2, independent of the wave-
length.

The upper portion of Fig. 1 represents a wave group con-
taining five waves. The lower portion shows the instanta-
neous distribution of potential energy density W, within
the wave group, as well as its value (W, ) averaged over a
wave period. As this group of waves passes a fixed point,
ten individual waves pass that point, not just the five that
are visible at any one time. This is the natural consequence
of the ratio of phase to group velocity being equal to two.
Crawford' has suggested a simple experiment that permits
observation of this property. If a series of ten waves is
launched in a reflecting pool, the result is a wave group
containing only five individual waves. But, as the group
passes any fixed point, ten individual waves pass that point.

The above presents what at first sight appears to be an
anomaly; the energy transported past a point by the indi-
vidual waves as the group passes by is twice the total
amount of energy shown in Fig. 1 and identified as propa-
gating with the waves. The individual waves transferring
potential energy in the direction of propagation, by their
growth and dissipation, move the kinetic energy forward;
the kinetic energy does not propagate along with the indi-
vidual waves, but it is created in the forward portion of the
group and converted back into propagating energy in the
rear portion of the group. In that way, the pattern of kinetic
energy is transported along with the group. The kinetic
energy varies with position within the group and it is equal
to the potential energy averaged over a wave period (see
Appendix A for this and other mathematical properties of
deep water waves); hence the curve in Fig. 1 for average
potential energy (W,) also represents the instantaneous
value of the kinetic energy W,. Thus the total energy pass-
ing a point as the group passes by is equal to the total energy
in the group—the sum of the immobilized energy plus the
propagating energy, or the kinetic energy plus the poten-
tial. The rate of energy flow averaged over a wave period
can be represented equally well as the product of the phase
velocity and the average propagating energy density (W,)
or as the product of the group velocity and the average total
energy density (W,) = (W,) + W,. The instantaneous
rate of energy flow cannot be expressed in terms of the
group velocity; it is given by the product of the phase veloc-
ity and the instantaneous propagating energy density.
(There is in addition a to and fro horizontal flow of kinetic
energy that averages to zero. See Appendix A.)

The relationship between group and phase velocity can
be likened to the forward progress of the links of the track
of a crawler-type tractor. The moving links move forward
at what corresponds to the phase velocity and are convert-
ed into stationary links at the forward end of the track. At
the rear end of the track, the stationary links are converted
into moving links. The average rate of forward motion of
the whole set of links making up the track corresponds to
the group velocity. The forward flux of links can be ex-
pressed either as the product of the velocity of the tractor
and the total density of links (moving and stationary) or as
the product of the velocity of the moving links and the
density of the moving links.
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A beautiful example of group and phase velocity for deep
water waves can be observed by looking at the bow wave
produced by a moving ship. Crawford® has given a very
readable and illuminating account of the structure of the
bow wave and the overall wave pattern around a2 moving
ship in terms of interference between differing frequency
components in the wave group. One can see a succession of
new individual waves forming in the trailing portion of the
bow wave, growing in amplitude as they move forward
through the bow wave until they reach their peak ampli-
tude near the middle of the group of waves making up the
bow wave. Beyond that point, the individual waves dimin-
ish in amplitude as they move toward the leading edge of
the wave group. In Crawford’s description, this is due to
interference between infinitely long wavetrains that make
up the wave group. However, in a physical sense, it is due to
conversion between immobilized and propagating forms of
energy density.

The concept presented here is complementary to and
fully consistent with Crawford’s description in terms of
interference between frequency components. A wave
group of the sort illustrated by the bow wave or a wave
group launched by rocking a canoe can be regarded as a
self-contained group without the requirement of assuming
infinitely long wavetrains for the individual frequency
components; the wavetrains appear to be infinitely long
because new waves are continually generated in the rear
portion of the group in phase with the waves that preceded
them, and waves die out in the forward portion of the group
by being converted into nonpropagating kinetic energy.

Figure 2 shows a sketch of a bow wave by Froude,’ and
Fig. 3 shows a photograph of a bow wave.* Cross sections
along lines perpendicular to the individual waves are simi-
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Fig. 1. (a) The contour of a wave group with five wave crests in the group,
based on the superposition of two sine waves. (b) The instantaneous distri-
bution of potential energy in the above wave group ( W, ) and the potential

energy averaged over a wavelength ({W,)), for the case of deep water
waves.
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Fig. 2. A sketch by Froude of the individual waves making up the bow wave
of a ship under way.

lar to the profile presented in Fig. 1, although both the
sketch and the photograph indicate that the number of
wave crests in the particular group being portrayed is three,
rather than five as indicated in Fig. 1. In the case of the
photograph, there is also a clearly discernible stern wave,
but attention should be focused on the bow wave. The gen-

Fig. 3. A photograph of a bow wave. The stern wake is also prominent.
(Courtesy of Jack A. C. Kaiser, U. S. Naval Research Laboratory, Wash-
ington, D.C.).
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eration of new waves and the decay of old ones is usually
most clearly evident in the group making up the bow wave.

I1. ELECTROMAGNETIC WAVES IN
DIELECTRICS

The rate of energy flow in electromagnetic waves is given
by the Poynting vector, but attempts to relate this energy
flux to an energy density and group velocity have always
proved troublesome, as one can see by seeking explanations
in existing textbooks. These difficulties have led in the past
to proposals for alternatives to the Poynting vector,>® but
these have not won widespread acceptance. The problem
was well stated by Hines: “We shall confine our attention
for the moment to nonabsorbing media. In these, Poynt-
ing’s density is a function of the phase, k(nz — ct). This
suggests a flow having a speed in the z direction equal to the
phase speed c¢/n, a result that is at variance with the gener-
ally accepted group speed, ¢/ (dkn/dk), if the medium is
dispersive.” Hines went on to point out that the group
speed could be obtained, on average, by adding a constant
of integration to Poynting’s density. Here, we identify that
constant of integration as the immobilized energy density
that must be present in the medium as the wavetrain passes
by.

Consider the case of normal dispersion associated with a
single resonant frequency well above the wave frequency,
with negligible absorption at the wave frequency. This is
characteristic of many transparent optical materials. The
passage of an electromagnetic wave energizes the medium
(i.e., it causes the electrons to oscillate in response to the
wave). The immobilized energy density consists of the sum
of the kinetic energy of the oscillating electrons plus an
equal amount, on average, of potential energy associated
with the restoring forces on the electrons. The remaining
part of the potential energy acts as if it were electric field
energy and is conventionally taken into account by the use
of a relative permittivity ¢, in the evaluation of the electric
field energy density. The velocities and displacements of
the electrons are out of phase with each other by 7/2, and
hence the sum of the potential energy (not including the
part that is taken into account by €, ) and the kinetic energy
is constant, and that sum constitutes the nonpropagating
energy density. The energy of the individual electrons al-
ternates between kinetic and potential, and this energy (all
of the kinetic energy and part of the potential energy equal
on average to the kinetic energy) does not propagate with
the individual waves. The nonpropagating energy density
is constant in a constant amplitude portion of a wave group
and equal to 2{ W, ), where (W) is the average value of
the kinetic energy density. The remaining part of the poten-
tial energy propagates with the phase velocity. These and
other properties of electromagnetic waves in transparent
dielectrics are set forth in detail in Appendix B.

The flow of electromagnetic energy is given by the
Poynting vector S, and it is equal to the product of the
phase velocity and the propagating energy density W,
which is the sum of the energy densities of the electric and
magnetic fields, W, + W,,, evaluated in the usual manner
using relative permittivity and permeability (the latter
usually being regarded as equaling unity for dielectrics).

Sometimes, the immobilized energy density is included
in the definition of the electromagnetic energy density,
which then can be related to a velocity of energy flow only
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in terms of averages over a wave period; the average Poynt-

ing flux is then the product of the group velocity and the

average electromagnetic energy density. Thus it is impor-

tant to be explicit in the definition of electromagnetic energy

density if it is to be related to energy flux and a velocity.
The average value of the Poynting flux is

(S) =AW, + W, v, =(W)v,,

where v, and v, are the phase and group velocities, and
(W,) is the average value of the total energy density, in-
cluding the immobilized part; i.e.,

(W) =(W,+W,)+2{W,).

Havelock” derived an equivalent relationship for (S') in-
volving group velocity and total energy in 1914, expressing
it in terms of the energy density of the aethereal electro-
magnetic field and the kinetic and potential energy of the
vibrators in the material medium. Brillouin® also derived
an equivalent equation, expressible in the terminology used
here as v, {W,,,) = v,{W,), terming it a curious relation.
In the light of the present work, where it is recognized that
only an identifiable part, W, of the total energy, W,,
propagates with the individual waves, the result no longer
appears curious; v, is just the weighted average velocity of
the propagating and immobilized energy densities.

The influence of the electron mass on the amplitude of
the electron oscillation affects the electrical polarization of
the dielectric; this effect is appropriately taken into account
through the use of a frequency-dependent relative permit-
tivity €, in the computation of electric field energy density.
For the case that we are considering—wave frequency well
below the single resonant frequency—the phase of the ve-
locity oscillation for the electrons lags the phase of the elec-
tric field by 7/2, and the phase of the displacement of the
electrons lags the field by 7. The Maxwell displacement
current is

JdP JE

Jaw =g 0T
where P is the polarization of the medium due to the dis-
placement of the electrons. In dielectrics, the polarization
current dP /3t (the current due to the motion of the elec-
trons) is in phase with the €, (JE /3t) term; the two terms
augment one another in producing the displacement cur-
rent. The magnetic field is related to the displacement cur-
rent, and its value is enhanced by the polarization relative
to its value in vacuum for a wave field carrying the same
energy flux.

I1II. ELECTROMAGNETIC WAVES IN PLASMAS

In plasmas, the energy relationships are more complicat-
ed than in dielectrics, as the restoring force on the oscillat-
ing electrons is due to the macroscopic electric field. The
electric field energy density consists of two components—
propagating and nonpropagating. The nonpropagating
part relates to the forced oscillations of the plasma, and the
remaining part propagates with the wave field at the phase
velocity. The immobilized energy density consists of the
kinetic energy of the electrons and, on average, an equal
amount of electric field energy; these two components of
the immobilized energy density are out of phase with one
another and they have a constant sum—twice the average
kinetic energy density. As part of the electric field energy
density is associated with the immobilized energy density
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in the plasma, the average propagating energy density is
less than the sum of the average densities of the electric and
magnetic fields; it is (W,) = (W, — W, ), where W, is
the sum of the energy densities of the electric and magnetic
fields and W, is the kinetic energy density. The total immo-
bilized energy density, which is partly electric field energy
density and which does not vary with the phase of the wave,
is W, = 2(W, ). These properties are developed in Appen-
dix C.

For plasmas, the kinetic energy must be evaluated if the
Poynting vector is to be expressed in terms of an energy
density and a velocity. The average Poynting flux can be
expressed equally conveniently in terms of the phase veloc-
ity or the group velocity as

(S)=W — W, = (W, + W),

The group and phase velocities are related by v,v, = ¢,
where c is the velocity of electromagnetic waves in vacuum.

The current due to the motions of the electrons (analo-
gous to the polarization current in dielectrics) opposes the
€, (JE /3t) term of the displacement current and acts to
decrease the magnetic induction, making it less than in
vacuum for wave fields carrying the same energy flux. The
electric field energy density exceeds the magnetic field en-
ergy density, but only as much of the electric field energy
density as equals the magnetic field energy density propa-
gates with the individual waves. The excess electric field
energy density is out of phase with but equal in magnitude
to the kinetic energy density; this part of the electric field
energy density and the kinetic energy density make up the
nonpropagating energy density. (If the plasma were treat-
ed as a dielectric, its electrical susceptibility would be nega-
tive.) The electron oscillations in the plasma produce no
total contribution to the magnetic field, their conduction
current being cancelled by their contribution to the dis-
placement current; this is consistent with the statement
that the energy density associated with the forced plasma
oscillations does not propagate with the individual waves.
For the forced plasma oscillations alone, the Poynting vec-
tor is zero, there being no magnetic field associated with
them. The instantaneous value of the Poynting flux is dis-
cussed in Appendix C. ’

IV. ELECTROMAGNETIC WAVES IN
WAVEGUIDES

Propagation of electromagnetic waves in a waveguide
provides another interesting example of group velocity. It
resembles a plasma in that v,v, = ¢?, but there is no kinetic
energy involved in this case, only the electric and magnetic
field energies. The immobilized energy density is associat-
ed with a standing wave in the transverse direction. The

average energy density of the standing wave in the trans-

.verse direction is (W) = (€,E%/4)cos’> @ and the aver-

age energy density of the propagating component is
(W,) = (E}/4) sin? 6, where 6 is the angle of inci-
dence of the rays within the waveguide. In this case, the
averages designated by ( ) are over both space and time.
The average total density is €, £3/4 = (W,_, ). The Poynt-
ing flux averaged over space and a wave period can be ex-
pressed either in terms of the phase or group velocity,

(S) =W v, =W, — W,

The properties are developed in Appendix D. If the Poynt-
ing flux is to be related to an energy density and a velocity,
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the use of total average energy density and group velocity is
probably more convenient than is the use of propagating
energy density and phase velocity. However, if instanta-
neous values of the energy flux are desired, it is necessary to
express the flux in terms of the product of the phase veloc-
ity and the instantaneous value of the propagating energy
density (€,E */2)sin? 6.
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APPENDIX A: DEEP WATER WAVES

This treatment follows Sommerfeld.’ The y axis is verti-
cal, positive downward. Propagation is in the plus x direc-
tion, the phase being ¢ = kx — ot. Unit width in the z di-
rection is used in evaluating the energy content and flow.
The velocity potential for small-amplitude waves in deep
water is

(Al)

where the units are L >/T. The velocity components of the
wave motions are

p=Acosg e ",

v, = —g—izAksin(p e ", (A2)
and

v, = —‘;—f=Akcosgo e . (A3)
The square of the velocity is

v =0l +v: =A% (A4)

Thus v* and the kinetic energy of the wave motion are not
functions of time or horizontal position except to the extent
that 4 depends upon the phase of the group envelope, as
portrayed in Fig. 1. As the kinetic energy density is constant,
the individual waves do not transport kinetic energy, al-
though they create it from potential energy when they move
into an area of undisturbed water, and they consumeit in the
decaying portion of a wave group where the individual waves
are growing in amplitude at the expense of kinetic energy.
The lack of transport of kinetic energy by individual waves
is most easily visualized in a portion of the wavetrain where
the amplitude is constant.

The particle displacements are
ky

J«:,,:Jv)c dt="—4—]£cos¢e_
®
and

yd=J‘Uydt= _éﬁsin¢ye_ky (AS)
w
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The phase velocity is v, = w/k. Sommerfeld® derives the
dispersion relation

o’ =gk. (A6)
The group velocity is
do g 1l w 1
l)g =——-=—:——=—Up,
dk 20 2 k 2
and the ratio of group to phase velocity is
v, /v, =1. (A7)

The y component of the surface undulations for small-am-
plitude waves is given by

~ — (4dk /w)sin p = — (w/g)A4 sin @, (A8)
where the approximation is that e ~ 7= 1.
The potential energy per unit surface area is
n 2 k 2 A 2 X
Wp =f gpydy:%:%smz¢, (A9)
o @

where p is the density. Averaged over a wavelength (or a
wave period),

242 (4
(w,) = LMJ. sin’*(kx — wt)dx
A 207 o

_8pk’4* _ pkdA®
40? 4

(A10)

The depth-integrated kinetic energy in a distance element
dx is

[} 2 2 oo
dWs=f g—vzdydx=££2£—f e dydx
n n

~pkA* dx/4. (Al1)

The approximation involved in the last step is that
e~ *7~1 for small-amplitude waves. The kinetic energy
per unit surface area is therefore

W, = pkA */4. (A12)

This is just equal to the potential energy density averaged
over a wavelength or a wave period, the energy densities
being energy per unit surface area.

The pressure distribution can be obtained from the ap-
proximate Bernoulli equation for small-amplitude pertur-
bations,

p=p L PEY + Pos

ot
where p, is the atmospheric pressure. The energy transport
in time dt through a vertical cross section of unit width in
the z direction and depth dy at any fixed value of x and y is

(A13)

dW=pv, dydt= —p%dydt.
Ix

Thus the depth-integrated energy flux per unit distance in
the z direction is

S= — ——dy.
[ o %a

We will evaluate separately the contributions to S by the
three terms in Eq. (A13) as S}, S,, and S;. From the first
term, we have

(Al4)

(A15)
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S, = —J‘wpﬂa—'pdy=pA2coksin2cpJ< e *dy
at o -

(Al6)

The last step makes the evaluation at x = 0 and involves
the approximation that e =7~ 1. This is just the flux of
potential energy.

The second term in Eq. (A 13) makes a contribution to .S
equal to

=~ (pw/2)A*sin’ wt.

S2=—J pgy-idy=pgkAsin¢zJ- ye~ ¥ dy.
n

n
As

o)
7 7

= (e */k*(1 + kn)=1/k?,

atx =0,
S, = —pg(4/k)sinwt = — p(w?’/k*)A4 sin wt

= — pv;A sin wt. (A17)
The third term in Eq. (A13) gives
S, —J Po ia’f’s—dy=110Aksin¢7J‘ e Mdy
] ox ' ”
=~ — PoA sin wt (A18)

atx=0.
Thus the depth-integrated energy flux density per unit
distance in the z direction is

= (pwA */2)sin® wt — pg(A /k)sin wt — pyA sin wt.
(A19)

The last two terms on the right average to zero, so the flux
density averaged over a wave period is

(S) =pwd?/4 =v,pkAd*/4 =v,(W,). (A20)
As (W,) = W, and v, = 2u,, this can also be written
(S>=vg(<Wp>+Ws)=vg<Wt)’ (A21)

where (W,) = (W,) + W, is the depth-integrated total
energy density per unit area averaged over a wave period.

We have identified the kinetic energy density as the non-
propagating energy density that must be present in the me-
dium in order for the wave field to exist. The kinetic energy
does not propagate except in the sense that it is continually
created in the forward portion of a wave group and used up
by creating propagating energy in the trailing portion of the
wave group, causing the pattern of kinetic energy density to
move along with the group. The energy density that is car-
ried forward by the wave field, at the phase velocity, is the
potential energy density of the wave field. The group veloc-
ity is not only the velocity at which the group moves for-
ward; it is the weighted mean velocity of all the energy
associated with the wave field—propagating and nonpro-
pagating. The wave group is a self-contained entity, even
though the individual waves continually advance through
the group. The various Fourier components making up the
group appear to be of infinite extent because new waves are
continually generated, in phase with the preceding waves,
in the trailing portion of the group.
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APPENDIX B: LOSSLESS DIELECTRICS

For an electromagnetic wave propagating through a di-
electric with normal dispersion and well removed from ab-
sorption bands, the electron displacements are 7 out of
phase with the electric vector of the electromagnetic
wave'® (out of phase because the charge is negative). The
nonpropagating energy consists of the kinetic energy of the
vibrating electrons plus the associated potential energy due
to the restraining forces on the electrons.

For dielectrics in general, the electric field energy den-
sity is considered to be larger than in free space (for the
same field intensity ) by the factor ¢,, the relative permittiv-
ity. It is worth recalling how this comes about. Linear iso-
tropic dielectrics may be considered as consisting of N elec-
trons per unit volume, each bound to its equilibrium
position by a restraining force described by a force constant
«. In the presence of a static electric field of intensity E, the
electrons are displaced from their equilibrium positions a
distance x such that kxx = — eE, where — e is the charge
on an electron. The total potential energy per unit volume
associated with the displacement of electrons is

W, =N£=£62E2= N&* 6E?

2 2 « €Kk 2

This potential energy density is produced as the result of
electrical work done as the electric field intensity rises from
zero to E. When the field returns to zero, the potential
energy is returned as electrical energy, so the potential en-
ergy density can conveniently be considered to be electric
field energy density; this must be added to the “true” elec-
trical field energy density €,E2/2 to obtain the electric
field energy density as conventionally expressed,

(B)

W, = &E* N& 6E*?
2 €k 2
6 E*? &E* €€ E?
=2+x22=2, (B2)

where the electrical susceptibility is

Y. = Ne*/eyk, (B3)
and the relative permittivity is

€, =14+ y. =1+ Ne/eyx. (B4)

If the applied electric field intensity is not static (or near-
ly s0), it is necessary to take into account the fact that each
electron in the dielectric is an independent oscillator whose

natural frequency is w, = v'«x/m, where m is the mass of an
electron. The oscillators are uncoupled in the approxima-
tion that we are using. If the exciting function is an electro-
magnetic wave, each electron is forced to oscillate at the
wave frequency, and there are phase relationships among
the various oscillators only because each is forced to main-
tain a fixed phase relationship to the wave field.

Consider the case where the wave frequency is much less
than the resonant frequency, i.e., @ €@,. (We consider the
absorption band at @, to be the only one significantly influ-
encing the propagating waves, and the absorption at the
wave frequency to be negligible.) Let the wave field be de-
scribed by

E=E,  =E,e", (B5)
where ¢ = wt — kz. The displacements and velocities of
the electrons are
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x=[(—e/m)/ () —&*)]|E (B6)
and
v=[(— iwe/m)/ (&} — &*)]E. (B7)

It is worthwhile deriving the potential energy in terms of
the restoring force constant x. Designate the potential ener-
gy density stored in the force field by W, ; only part of this
is regarded as electric field energy density, as will be shown
below. The potential energy density stored in the force field
is

2 Nk\( — eE/m\?
W =Nﬂ=(_) —eE/mY* (B8)
Pt 2 2 \wj —o
As wy = JKk/m,
2 2
ma) e
WPO‘ = : 2.2 2 2E2
2 m*(ef — o)
_ Ne? o3 &E? _ Wy} 6 E?
mey, (0 —a®)? 2 (@ — ) 2
_ ', €E’ (0 —oM)w) €E’®
(@ —w®)? 2 (0} — &*)? 2 |
w'w, €E;
= cos’ @
(@f —w*)* 2
2 EZ
Zw” > 20 cos’ @, (B9)
0 —

where wj = Ne’/€,m is the plasma frequency. The second
term on the right is conventionally considered to be part of
the electric field energy density through the use of a relative
permittivity different from unity. The first term on the
right is that part of the potential energy that interacts with
the kinetic energy in the forced oscillations of the charges.
Designate the first term W,_; it pairs with the kinetic ener-
gy density,

LA B LTI

2 (wh —a*)?* 2

with which it is out of phase, to produce the total immobi-
lized energy density in the medium. That is, the immobi-
lized energy density associated with the excitation of the
oscillators is

(B10)

'w), &E;]
(0f —*)? 2
which is constant so long as E; is constant. It is twice the
average value of the kinetic energy density, i.e.,
W, = 2(W,). The total electric field energy density, in-
cluding that part of W, that is considered to be part of the
electric field density, is

W, =W, + W, = , (B11)

w0t  €E}

E2
W, = 6"2 ® cos?p 4 —2 cos? @

e
Wi — o°

_(1+ w; )eoE2
w0y —w®) 2

&E? €€ E?
=(1+y. =,
( X 2 2

(B12)

where . .
X = 0p/ (05 — @), (B13)
which agrees with the value Ne?/€,« given earlier for y,
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[Eq. (B3)] if @ is negligible by comparison with w?.
The polarization current J,, is the current due to the mo-
tions of the electrons, and

J, = — Nev = [ioNe*/e;m(w) — &*) )€, E
= [iwew}/ (05 — &*) ] & E. (B14)
J, is just part of the displacement current J,, ; let J, repre-

sent the remaining part, so that J,,,, = J, + J;, where

I, = 2 — ive,E. (B15)
at
Then
Jaisp = i06E [1 + w03/ (0f — @) ]. (B16)

Note that J, and J,; are in phase and that their ratio is

T,y = w2/ (@3 — o) =¥ (B17)
The polarization is
P= — Nex = [(Ne*/m)/ (0} — *)|E
= [0}/ (0} — @*) |6 E = x.6,E. (B18)
The relative permittivity is
€ =1l+y =1+w)/(f —w®) =Jy,/Jy. (B19)

The contribution of the polarization to the electric field is
2

Ep:Nex:_ﬁz_ o, E,

€ €o 0y — &*

(B20)

and this is 7 out of phase with £.
E, x,v,J,,J,, and E,, along with H, are shown as pha-
sors in Fig. 4 for y, = 0.25.

The electric field is related to dB/dt by
VXE= —3dB/dt, or

J(—ik)E= —jliw)B= —jiou,H.
Therefore,

E = (o/kK)uoH=1v,B
and

E/H = wpu,/k = p,v,, or E=1v,B, (B21)

where , is taken to be unity, as it usually is for dielectrics.
Alternatively, the magnetic field intensity H is related to
the current density by

VXH=J, +J, = —i( — ik)H.

Therefore,
ikH = il 0w}/ (0f — )] & E + iwe, E,
and

H= (0/k)[1 + &/ (0} — ©*) |6, E =v,€,6 E.
Therefore, as before, E/H = 1/v,€,6; = pyv,.

The dispersion relationship is

=21 _ d ., (B22)
k Vo€, €6 1+ @2/ () — &)

or

k= (o/c)\1 + 02/ (0} — o). (B23)
Thus the index of refraction is

n=c/v, =1+ &3/ (0 — &*) =, (B24)
The group velocity is given by dw/0dk; therefore,
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Fig. 4. A phasor diagram illustrating the phase relationships for various
quantities involved in electromagnetic wave propagation in a dielectric.

v, = %‘(’- = c{n(o} — /[ (0} — 0*)* + W) ]}
(B25a)
= v, {rn*(0} — )/ [ (@} — ") + W)} ]}
(B25b)
=1,{(0} — 0’ + w}) (&} — *)/
[(03 — 0*)? + wie?]}. (B25c)

To force the oscillators to oscillate at frequency @ when
their natural frequency is w, requires a cyclic interchange
of energy between the oscillators and the forcing field, and
it is worthwhile looking at this explicitly to see where it
appears in the equations. After the electrons pass through
their equilibrium positions with maximum velocity, they
are slowed down by the mechanical restoring force. Their
velocities would be reduced to zero in a quarter of the natu-
ral period except for the electrical force upon them, which
causes them to slow down more slowly and extends their
excursion. An expenditure of electrical energy is required
to accomplish this. After reaching their maximum excur-
sions, the mechanical force would return them to their
equilibrium position too quickly, and an electrical force is
required to prevent this; in this case electrical energy is
produced at the expense of mechanical energy and the en-
ergy extracted from the potential energy is just equal to
that put in earlier during the half-cycle.

The rate at which electrical energy is expended per unit
volume in doing mechanical work on the oscillators is

— NevE = — Ne[(we/m)/ (0 — »*)]
X E, sin @F, cos @
= [ — 002/ (0} — &) ] (6, E2/2)sin 2.
(B26)

The amount of electrical energy that has been converted to
mechanical energy per unit volume at any time is obtained
by integration, and it is
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Wi = [02/ (0 —0?) ] (&E§/2) (cos 29 + 1)
= [}/ (0} — @*) ] E} cos’ @ = y,€E?,
(B27)

where the constant of integration has been selected on the
basis that no mechanical energy due to this interchange is
present when x (and E) = 0. (There is, of course, mechan-
ical energy present in the oscillators at this time in the form
of kinetic energy, which interchanges cyclically with that
part of the potential energy not considered to be electric
field energy.) Thus the electrical energy expended and re-
covered each half-cycle by doing mechanical work in forc-
ing the oscillation at frequency o is just the mechanical
potential energy that is conventionally considered to be
electric field energy and taken into account by the use of an
electrical susceptibility different from zero or a relative
permittivity different from unity.
The electric field energy density is

wo=Le € E*= s — 0"+ @) @Fi cos’
e 2 o%r a)g _ w2 2 ¢’
(B28)
and the magnetic field energy density is
W, =luu H> =6, E*=W,. (B29)

Let W, be the sum of electric and magnetic field energy
densities. Its average value over a wave period is

<Wem) = 2<We) = E,€0E3/2.
The Poynting flux is
S=EH=Fv,e.e,E=v,6,6,E*’=v, W, (B31)

in agreement with the common practice of regarding the
time-averaged Poynting flux as being the product of the
phase velocity and the sum of the average energy densities
of the electric and magnetic fields.

The total energy density is

(B30)

W=W,+W,+W, .+ W,
= (6,€6,E*/2 + pou,H?/2
+ [@*&}/ (0 — @*)?] (6, E§/2) (sin’ @ + cos’ @)
=66E*+ [0}/ (0) — 0*)*] (6E}/2)
=W, +W.. (B32)

The first term is the sum of the electric and magnetic field
energy densities, which propagates with the phase velocity.
The second is mechanical energy—the sum of the kinetic
energy and that part of the potential energy that cannot be
treated as if it were a part of the electric field energy den-
sity; it is constant in space and time so long as E, is con-
stant, and it does not propagate (except in the sense that it
is continually added to'in the growing portion of a wave
packet by expenditure of propagating energy, and it is con-
tinually removed from the trailing portion of a wave packet
by conversion to propagating energy. The average value of
the total energy density is

€& E} &E}

2 (@) —®)? 2 ]
= (&E3/2)[€, + o’0)/(0f — 0*)?]. (B33)
Therefore, making use of Egs. (B31), (B33), and (B19),

2 .2
a)a)p

(Wt>=6r
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<S> —_—UP(GOE,E(Z)/Z)
= 1,6, [€, + 0’02/ (0§ — 0*)*] " (W,)
w2 _w2+w2)(w2 ___(02)
=V, > 2 2p2 02 2 (W.) (B39
(0 — @7) + wpw,
= v (W,).

The last step makes use of Eq. (B25c¢).

Usage varies as to what is meant by the term electromag-
netic energy. Some take it to be synonymous with the total
energy W,. Others consider it to be the sum of the electric
and magnetic energy densities expressed in terms of €,
(and y, ), while in no way denying the presence of kinetic
and potential energy in the medium due to the presence of
the electromagnetic fields; we use the latter terminology
and designate the sum of the electric and magnetic energy
densities W__ . Jackson'' introduces two other useful ener-
gy densities, E 4 and E,_ ... Eq.q 1S defined as the sum of
the electric and magnetic energy densities evaluated with
€, =u, =1, ie., Egy is the sum of the true electric field
and magnetic field energy densities not taking into account
the energy stored in the medium that will be released each
half-cycle as if it were electric or magnetic field energy den-
sity. Thus for electromagnetic fields

2 2 2

Egea Zi“F B _ (1+¢€,) SF

2 2410

(B35)

(B36)

E_.... includes the kinetic energy density and all the poten-
tial energy density, including that part that is often consid-
ered to be electric field energy density, y,€,E>/2. Thus, in

our terminology,
Emech = Wk + Wpot = Wk + Wpe +Xe(6OE2/2)

=W, +x.(&E*/2), (B37)
and the total energy density is
W, =Esaq + Enecn
= (14 €)(6E/2) + W, + x.(6E*/2)
=€, E*+ W, (B38)

in agreement with Eq. (B32).

To summarize, the potential energy that is converted
into electrical energy each half-cycle propagates with the
individual waves at the phase velocity; it is considered to be
a part of the electric field energy density when the latter is
evaluated as €,€, E /2. The remainder of the potential en-
ergy is converted into kinetic energy each half-cycle and it
does not propagate with the individual waves; it is convert-
ed into propagating energy and carried off by the wave field
only as the wave field diminishes with the passage of the
group. The group velocity is the weighted average of all the
energy associated with the wave field in the dielectric.

APPENDIX C: LOSSLESS PLASMAS

For propagation of electromagnetic waves in nonabsorb-
ing plasmas at frequencies above the plasma frequency, the
energization of the medium during the passage of the waves
includes the kinetic energy of the electrons, just as in dielec-
trics. However, the restoring forces associated with the os-
cillations of the electrons are electric. The forced oscilla-
tions of the plasma do not propagate energy; they produce
no magnetic field because their contribution to the dis-
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placement current exactly cancels the conduction current,
and hence the Poynting vector associated with these oscil-
lations is zero.

For electromagnetic wave propagation in nonabsorbing
plasmas at wave frequencies well above the plasma fre-
quency, where the electric field is described by

E=E_ =E,e", (Cl)
the equations of motion for the electrons (acceleration a,
velocity v, and displacement x) are

—eE . eF eE
a= , v=Ii—, and x= .

m mw mo
Note that x is in phase with E and that v leads Eby 7/2. The
conduction current is

J, = — Nev, (C3)

which lags E by 7/2. The displacement of the electrons
relative to the positive charges produces a component E, of
the total field E, increasing the field over what it would
have been if electrons were immobile, and

Nex Né* E ((02 )
E = = —_ = E,
T e me, o’ @

@ = ot — kz,

(C2)

(C4)

where @, = Ne’/me, is the square of the plasma frequen-
cy. By comparison with dielectrics, this suggests the use of
an apparent electrical susceptibility that is negative,

X, = — ./, (C5)
and an apparent relative permittivity,
€ =1—w /o’ (C6)

that is less than unity. The electric displacement is
D =¢,E— Nex = €,E — (0;/0* )6, E = €,€,E. (CT)

The electric field E, part of which (E;) results from
charge separation in the plasma, is related to d B/d¢ by
VXE= —JdB/dt As

VXE=](— )E and Z2 = jiwB = Jiogso .
t
therefore,

E = (o/k)uoH=10,B,

where v, is the phase velocity.
The magnetic field intensity H is related to the current
density by VXH = J, + J,;, where

(C8)

J,=¢ 9E _ iwe, E, (C9)
ot

J,= —Nev= — i(Ne’/mo)E = — iv(0,/0")E,
(C10)
and
J /= — ) /0’ =y (C11)
Note that J,, leads E by 7/2 and is 7 out of phase with J,."?

‘These relationships are portrayed in a phasor diagram in

Fig. 5.
The conductivity is

(C12)
For conductors in general [see Ref. 12, Eq. (28-11) ],
k?=kleu, [1—i(o/we)l, (C13)

where k, is the vacuum wave number. For plasmas,

o=J,/E= — ive,w,/o’".
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Fig. 5. A phasor diagram illustrating the phase relationships for various
quantities involved in electromagnetic wave propagation in a plasma.

€, =p,=1,and
=ki(1 (C14)

This is the dispersion relation, and A, is smaller than A by
the factor

n=\1-0/0’ =€ <1, (C15)

and v, = ¢/n is greater than c. Taking differentials to get
the group velocity,

o _ ke _ ¢

— @l /o).

v, = = =nc. (C16)
gk w v,
Therefore,
VU, =C". (C17)
The Poynting flux is
2
S=EH=E-L _"E__ e E’
Uptto € Ho
=n"v,6E* =v,€6,E?,
= v, [€(€EY2) + B/2u,], (C18)
and
E}? E? E?
(S)=nc S0 =u,n? 602 = =v,€ 602 9
=v,[€1(e, E2/4) + B2 /A, ]. (C19)

Thus €/ (€, E?/2) is the electric field energy density that
propagates with the individual waves; however, it is not the
total electric field energy density, as there is additional,
nonpropagating, electric field energy density associated
with the forced plasma oscillations. The kinetic energy
density is
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W, = = { 9 (—sin <p)>2
2 2 U |
2 EZ 2
=2 £oB0 G2 ¢)—(l—n) ° sin? @
)
= —yi(&E}/2)sin’ ¢ (C20)

This is associated with an electric field energy density W,

that does not propagate with the individual waves (it being

associated with the local plasma oscillations) of equal am-

plitude but opposite phase, where
W W} &EG 2

”P
(()2

-

2
© cos?@. (C21)

———cos’p= —y.
Adding this to the propagating electric field energy den-
sity, we get for the total electric field energy density

W, =¢e,E*/2. (C22)

We now list a number of energy densities of interest in
plasmas:

Electric:
W, = e,E*/2 (C23)
Magnetic:
W,,,=“°H2="_° E' _ . &F (C24)
2 2 vl 2
Electromagnetic:
W, =W, +W, =(14+n"eEY2 (C25)
We—Wm=(1~n2)£1E:=w—i &E” (C26)
2 o 2
Kinetic:
W, = —y.(&E}/2)sin’ . (C27)
Total
W,=We + Wi
= (&, E3/2)cos’ @ + n*(€,E}/2)cos’ ¢
+ (1 —n*) (& EL/2)sin* @
= (14 n*)(&E5/2)cos’ @
+ (1 —n?) (& E}/2)sin’ @
=2n*(e,E3/2)cos’ @ + (1 —n?) (€, E(/2)
(C28)
=W, + W, (C29)
where
W,=n’eEjcos’p=€E*=2W, (C30)

is the energy density that propagates with the phase veloc-
ity, and

&E; o) &Ej
o 2
is the immobilized energy density.
Note that ED/2 is not equal to the electric-field energy
density W,; ED/2 is equal to n’¢, E*/2, or W,,. It is equal
to just that part of the electric-field energy density that
propagates with the phase velocity; it does not include the
immobilized part that is associated with the forced plasma
oscillations and their local exchanges between kinetic and

Wsz(l_nz)

=2(W,) (C31)
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electric field energy. This property of ED/2 has been dis-
cussed by Booker'® in a much more general context.
In terms of values averaged over a wave period,

(W,) = (W — W) = n*(&,E3/2),
(S)=v,(W,),
<Wt>=<Wem+Wk):€0E(2)/2) (C33)

(8) =v (W),

(W, = (W, W)_l—nzeoEcz)__la’,z; &E;
=W, W)= =

2 2 2 0 2
(C34)
W) _1-n __afe’ __© (e

W) 140 2-0l/0® 20—

(S) =0, (We, — W) = 0,AWrs + W)
=v,n*(E}/2) =v,2(W,,)
=v,(€E}/2). (C36)

Stratton'* gives an expression for the difference between
the average electric and magnetic field densities using the
complex Poynting vector, and it can adapted to give the
result presented above in Eq. (C34).

Plasma oscillations at the plasma frequency are strictly
local and do not propagate.'®> The treatment presented here
shows that forced plasma oscillations at frequencies above
the plasma frequency are also local and do not propagate.
Both cases are associated with the fact that the conduction
current exactly cancels that part of the displacement current
associated with the plasma oscillations, so the plasma oscil-
lations produce no magnetic field and no electromagnetic
energy flow.

Booker'? has given much consideration to energy densi-
ties in electromagnetic waves in plasmas, and he came close
to developing the concept put forth here. He recognized that
the kinetic energy does not propagate with the individual
waves (even though it appears to do so, as the phases of the
plasma oscillations are controlled by the passing field of
electromagnetic waves), and he discussed the electric field
density in a way that is equivalent to considering a portion of
it, on average equal to the average kinetic energy density, as
nonpropagating. Anyone interested in pursuing this subject
in more depth, including the effects of ions, collisions, and
ambient magnetic fields, should consult this source.

APPENDIX D: PROPAGATION IN WAVEGUIDES

Consider two coherent fields of plane waves of equal am-
plitude, with their electric vectors in the y direction, propa-
gating in directions making angles + ¢ and — ¢ with the z
axis and angles — @ and 6 — 7 with the x axis. The propaga-
tion vectors are

k, =ik, + kk,,

k, = — ik, + kk,,
where tan 6 = k,/k, . Let the amplitudes of each of the two
wave fields be E,/2; then the combined wave field is de-
scribed by

E=E, +E, = (E,/2){[cos(ot —k,z — k,x)]
+ cos(wt — k,z + k. x)}

= E, cos{wt — k,z)cos(k,x). (D1)
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(C32) |

This pattern is periodic in the x and z directions, and it
moves in the 42z direction with velocity
w/k, = w/(ksin 8) = c/sin 6. Figure 6 portrays the wave
crests; the intersections (regions of maximum constructive
interference) are identified by solid circles and the regions of
maximum destructive interference are identified by crosses.
The dashed lines identify two planes on which
cos(k, x) = 0,where E = 0O at all times; the spacing between
them is #w/k, =A/2cos 6, and additional planes with
E =0 occur with similar spacing.

A reflecting surface could be placed along any of these
planes, for example, at the lower one shown in Fig. 6 at
x = — A /4 cos 6, and the wave field above that plane would
then be reproduced by a single incident beam, the angle of
incidence being 6. Another reflecting surface could be
placed at the upper plane shown in the figure at
x = 4+ A /4 cos 0, with the wave field between the two
planes being maintained by multiple reflections. This corre-
sponds to the TE, mode in a waveguide. (If the second
reflector were placed at 34 /4 cos 8, the pattern would corre-
spond to the TE, mode.) The pattern of dots along the z
axis, representing regions of maximum constructive inter-
ference, propagates along the waveguide with velocity
¢/sin 6, and this is the phase velocity so far as propagation
along the waveguide is concerned. However, the group ve-
locity reduces the speed at which information can be trans-
mitted to c¢ sin € (corresponding to the zig—zag path length
traveled at velocity ¢). To examine the immobilized energy

density associated with the phenomenon of group velocity,
we must look at the magnetic vectors.

Since the E vectors are in the y direction, the H vectors are
inthe x-z plane and have x and zcomponents. The ratio £ /H
has its conventional value cu,, for each of the two constituent
waves, but the vector fields add differently for H and for E.
The components for H are

H, = —(E /euy)sin 6, H, = — (E,/cu,)sin 6,
(D2a)
H,, = + (E /cuy)cos 8, H,, = — (E,/cu,)cos 6.
(D2b)
X
X X X X X
X X X X X
A
4cosl |/~ —F——\—— A= XA~
8
0 ¥* ¥* * * ¥* z
D N . S A WA Wy A e G
4cos
X X X X X

Fig. 6. The interference pattern for two plain wave fields whose wave fronts
make angles + @ with the z axis. The portion of the wave field between
x=A/(4cos @) andx = — A /(4 cos 0) is the same as that in a waveguide
with propagation in the TE, mode. The whole pattern moves in the + 2z
direction with velocity ¢/sin 6.
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Thus, at x = 0, where E, + E, has its maximum amplitude
and where E, = E,,

H =H,+H, =0
and
H=H,= — [(E, + E,)/cu,]sin
= — (2E, /¢y, )sin 6.

At x= +A/4cos O, ie, at the reflecting surfaces,
E, + E, = 0. The x components of H, and H, cancel, while
the z components add, yielding

H=H,= + (2E,/cu,)cos 6. (D3)

The presence of a z component in the magnetic field is
indicative of a standing wave between the mirror surfaces
(or in the wave pattern of the superimposed plane-wave
fields). To evaluate this, consider the individual waves:

E, =j(E,/2)cos(wt — k,z — k, x),
E, =j(E,/2)cos(wt — k,z + k. Xx),
H, = —1(E;/2cu, )cos{wt — k,z — k, x)sin

+ lA((EO/2c,u0 )cos{wt — k,z — k., x)cos 6,
H, = —1(E,/2cu, )cos(wt — k,z + k, x)sin 8

— lﬂ((Eo/Zc,u0 Yeos(wt — k,z + k, x)cos 0,
H, = (— Ey/2cu,)[cos(wt — k,z — k,x)

+ cos(wt — k,z + k. x)]sin 6,

= ( — Ey/2cuy)2 cos(wt — k,z)cos(k, x)sin 0

= (—E/cuy) sin 6. (D4a)
H, = (Ey/cuy )sin(wt — k,z)sin{k, x)cos 6. (D4b)

Note that H, is in quadrature with E. The contribution of H,
to the Poynting vector is in the + x direction, and it aver-
ages zero over a wave period. The contribution of H, to the
Poynting vector is in the + z direction. Of the average elec-
tric field energy density, an amount equal to that part of the
average magnetic field energy density corresponding to the z
component of the magnetic field is associated with the stand-
ing wave and does not propagate in the z direction. The
average energy density that propagates with the phase veloc-
ity is the remaining part of the average electric field energy
density plus the average energy density associated with the x
component of the magnetic field.

Let (W,,,) be the time and space average of the energy
density associated with the z component of the magnetic
field, (W, ) the average energy density associated with the
x component, and (W,) the average energy density of the
electric field. The total average electromagnetic energy den-
sity is then (W) = (W,) + (W) + (W,,). The aver-
age energy density of the standing wave in the transverse
direction is 2(W,,,), and the average energy density propa-
gating with the phase velocity is

(Wer) =2(W,.) = (W) +(W,.) —(W,,). (D5

In this Appendix { ) means average over space and time.
Averaging over time gives average values equal to half the
peak values, and averaging over the cross-sectional area of
the waveguide further reduces the maximum values by an-
other factor of 2, so the average densities are

(W,) =€6,E}/8, (D6)
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(W,.) = (e, E2/8)cos’ 6, (D7)
(W,..) = (,E2/8)sin’ 6, (D8)
(W) = W) + (W) =(W,) =€6E;/8, (DY)
(W)= (W) ={(W.) +{W,) =6E3/4, (DI0)
(W) =2(W,,) =¢€,E3/4)cos’ 6, (D11)
and

(W,)=(W,) +(W,.)—(W,.)

= (6 E}/8) (1 +sin* § — cos® 6)

= (€,E2/4)sin® 6. (D12)

To obtain the average value of the Poynting vector, we
need consider only its z component (which is associated
with the x component of H). At x =0,

S, = — E,H, = (E, + E,) (2E, sin 6)/cut,
=4E7 sin 6)/cu,
=4ce, E} sin 0 = (E*/cu, )sin 0

=c€, E*sin 6. (D13)
Taking the time average at x = 0 yields c(e, E3/2)sin 6.
Then taking the average over x,
(S) =cl(e;E5/4)sin 0 =csin 0(W,) =v (W,).
(D14)
This can also be expressed as
(S) = (c/sin 0) (e, E5/4)sin® 0 =v,(W,). (D15)
In this case, the most natural association to make with the
average Poynting flux is group velocity times the time- and
space-averaged electromagnetic energy density. However, if
instantaneous values of the energy flux are desired, the prod-
uct of the phase velocity and instantaneous values of the
space-averaged propagating energy density (&, E 2/2)sin’ 8
must be used.

'F. S. Crawford, “Water-wave machine for demonstrating group veloc-
ity,” Am. J. Phys. 41, 1203-1205 (1973). Also see footnote 8 of Ref. 2.
’F. S. Crawford, “Elementary derivation of the wake pattern of a boat,”

Am. J. Phys. 52, 782-785 (1984).

*W. Froude, On Experiments upon the Effect Produced on the Wave-
Making Resistance of Ships by Length of Parallel Middle Body (Institu-
tion of Naval Architects, 1877), or see K. S. M. Davidson, Principles of
Naval Architecture (Society of Naval Architects and Marine Engineers,
New York, 1939), Vol. 2, p. 67.

*Courtesy of Dr. Jack A. C. Kaiser, U. S. Naval Research Laboratory,
Washington, D.C.

*H. M. Macdonald, Electric Waves (Cambridge U. P., New York, 1926).

®C. O. Hines, “Electromagnetic energy density and flux,” Can. J. Phys. 30,
123-129 (1952).

"T. H. Havelock, The Propagation of Disturbances in Dispersive Media
(Cambridge U.P., Cambridge, 1914), Chap. 4, Eq. (114).

®L. Brillouin, Wave Propagation and Group Velocity (Academic, San
Diego, 1960), p. 99, Eq. (30).

°A. Sommerfeld, Mechanics of Deformable Bodies (Academic, New
York, 1964), Chap. V.

'9E. Hecht, Optics (Addison-Wesley, Readmg, MA, 1987), p. 60.

"'J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd
ed., p. 237.

">P. Lorrain, D. R. Corson, and F. Lorrain, Electromagnetic Waves and
Fields (Freeman, New York, 1988), p. 544 give the above phase relation-
ships among the displacement current, the conduction current, and the
electric field in a plasma, using the terminology equivalent relative per-
mittivity in place of the apparent relative permittivity used here; in the
more general case that they discuss, this may be positive or negative. They
donot discuss velocity of energy flow, but they pose a problem (29-12) in
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which they ask that the kinetic energy be evaluated and related to the
Poynting vector and the group velocity.

3H. G. Booker, Cold Plasma Waves (Martinus Nijhoff, Boston, 1984),
Chap. 3.

"4 The difference between the average electrical and magnetic energy densi-
ties can be evaluated using the complex Poynting vector S = (ExXH*)/2
[J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York,
1941), p. 137]. Stratton states that the divergence of the imaginary part
of div S [his Eq. (33)] is equal to 2e times this difference, implicitly

assuming the conductivity o to be real, although this is not a requirement
of the derivation. For the case under consideration here, is purely imagi-
nary, as indicated by Eq. (C12), and the rhs of Stratton’s equation be-
comes purely imaginary. Further, for a steady-state wave field, the diver-
gence of the complex Poynting vector is zero. With these adjustments,
Stratton’s equation yields the result given here for the difference between
the average electric and magnetic energy densities.

SG. Schmidt, Physics of High Temperature Plasmas (Academic, New
York, 1966), p. 200.
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A novel method for circuit analysis is presented, which can help in the development of intuition
about the current distribution in a complicated circuit with an emf source and resistors, and can be

used for analytic and numerical calculations.

L. INTRODUCTION

The connection between random walks and potential
theory has been known for some time."* Application to
electrical circuits and the equivalence of random walks to
Kirchhoff’s laws are discussed briefly in some more recent
mathematical treatises.>* A very nice small book that ap-
peared 5 years ago presents in pedagogical detail the identi-
ty between Markov chains and resistor networks.® These
presentations are made by mathematicians and seem to be
little known in the physics and electrical engineering com-
munity. To my knowledge, the method has not been used to
help physics students understand the behavior of complex
circuits. In this note the ideas will be presented in the sim-
plest terms and it is hoped that physics teachers may find
this interesting and useful in teaching circuit theory.

For beginning students of electromagnetism, the con-
cepts of charge and force are thought to be easy, while field
and potential are more difficult to comprehend. Simple key
points are the repulsion of like charges and charge conser-
vation. The study of dc currents introduces resistors, wires
(zero resistance), and batteries (source of emf), which are
put together into circuits. A circuit consists of a set of
“nodes” with each node connected to other nodes by resis-
tors. There may be several resistors connecting the same
pair of nodes. Any set of points of the network, mutually
connected by wires, together with those wires themselves,
constitutes a single node. The terminals of one or more
batteries will be connected to nodes. The resistance of a
resistor is usually defined by Ohm’s law i.e., by R = AV /1,
where AV is the electric potential difference between the
ends of the resistor.

1. THE PROBLEM

It is important for students to understand both quantita-
tively and qualitatively the way the current will be distrib-
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uted in a circuit. The simplest example worked out in detail
in a first course is the effective resistance of two resistors in
parallel, 1/R = 1/R, + 1/R,. This equation follows from
the fact that the current will branch through the two resis-
tors in the ratio of their conductances, i.e., I,/I, = 5,/5,,
where the conductance S = 1/R.

The usual method to treat such problems is the use of
Kirchhoff’s node and loop laws. The node law, that there
be no net current into a node, follows from charge conser-
vation and the fact that the repulsion of like charges pro-
hibits the accumulation of net charge at any node or resis-
tor, and is easy for students to understand. The loop lawis a
little more difficult since the concepts of JR drop and emf
are required. The law states that the algebraic sum of IR
drops around any loop must equal the emf gain of the same
loop. The resulting equations are easy to formulate, but the
solution of the resulting coupled linear system is not trans-
parent and the qualitative nature of the solution is not easi-
ly seen short of doing the calculation.

We present here an alternative method for any case in
which a single source of emf is producing current in a cir-
cuit of any complexity. The circuit will have one node
called the “input” node, where the current enters from the
positive terminal of the battery, and one called the “out-
put” node, where the current exits to the negative terminal.
Between these nodes will be the network of resistors. Ex-
tension to circuits with several batteries is easy.

One way to think about such a circuit physically is to
note that the emf of the battery will produce E fields in the
resistors. The fields “push” the charge, producing currents
that will follow these fields, branching at a node more or
less in the same way as the lines of the field branch out. This
gives a nice picture, but is not very helpful to the intuition
since the bending of the E fields in the wires and resistors
near a node is quite complicated. Since the branching ratio
for currents is independent of the emf for the case we con-
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