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The correction of an erroneous textbook derivation on electrical charge relaxation in conductors
is discussed. The actual decay in a good conductor is damped oscillatory instead of the simple
exponential decay that is often claimed, while short wavelength disturbances spread through the
medium much like particles of mass m = fiw, / (v*), where @, is the plasmon frequency and (v*)

is the mean-square electron velocity.

A derivation that is found in many prominent electro-
magnetics textbooks for physicists' and engineers,” and at
least one well-known optics text,’ concerns the relaxation
of electrical charge in a conductor. Its expressed purpose is
to demonstrate that the free relaxation of a disturbance

- away from equilibrium in the charge density is an extreme-
ly rapid process, so that on the time scale of most physical
events no electrical charge perturbance can prevail inside a
good conductor. Even though it has been pointed out be-
fore* that both the proof and the result given in these
books are seriously in error, many authors of new texts
continue to include it. The error is due to-the implicit as-
sumption that the relaxation time of the charge density is a
dc phenomenon, even though the time scale of the process
is calculated to be as short as 10~ '%s. This decay rate actu-
ally corresponds to the x-ray frequency region! It is desir-
able that proofs presented in undergraduate textbooks be
within the grasp of the average student but educational
objectives are poorly served by erroneous proofs, especially
when widely adopted. Moreover, for those texts that are
written at the graduate level, such “simplification” is even
less appropriate.

This issue was apparently first attended to by Ashby,*
who points out that the actual electrical decay time of a
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conductor should in fact be of the order of the electron
collision time, which is about 2 10™'* s for copper. A
more recent discussion, by Ohanian,’ makes an excellent
point of the fact that the relaxation actually proceeds in
three stages. The first stage is the relaxation of electrical
charge density. The second stage is the expulsion of the
electric and magnetic fields to the exterior of the conductor
and that of currents to the surface. During the third stage,
the process terminates with the slower ohmic and radiative
damping of the surface currents. Ohanian’s discussion
centers on the second and third stages of the process, while
Ashby treats the first.

Physical consideration shows that a description of the
first stage, that of charge relaxation, depends on whether or
not the total charge is zero. In the former case, the relaxa-
tion of current and charge densities is accompanied by a
transport of the surplus charge to the surface of the con-
ductor, which requires special mathematical treatment.
The time constant associated with this stage is then also
related to the size and geometry of the conductor, as well as
to the initial charge distribution. Moreover, the equations
describing the transport of the uncompensated charge are
nonlinear, the solution of which would be much more diffi-
cult. And finally, since there is no definitive decoupling
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between fields and charges, the division between the first
and second stages is expected to be blurred. We discuss
here only the relaxation of the more important case of com-
pensated charge fluctuations, which may be accurately de-
scribed by linearized equations. Then the relaxation of elec-
trical charge density is largely independent of initial
conditions and of the conductor’s size and shape.

The diffusion of the electric and magnetic fields and as-
sociated currents will endure much longer, being charac-
terized by a time constant 7, = u,0d *,” where d is a length
of the order of magnitude of the conductor’s dimensions.
These fields and currents diffuse to the surface of the con-
ductor, and the fields are expelled to the exterior, persisting
with the surface currents until they are damped by Ohmic
and radiation losses.?

The procedure generally followed in textbooks is based
on the equation of continuity of the current density J(r,?)
and charge density p(r,?):

div J(r,0) +fl%=o. (1)

The assumption of instantaneous, linear response is made
through Ohm’s law, i.e.,

J(r,t) = oE(r,1), (2)
where o is the (dc) conductivity. Finally, Gauss’ law, i.e.,
div E(r,t) = p(r,) /€, (3)

is substituted. This yields a first-order differential equation
describing the time dependence of p(r,t):

dp(r,t) +p(r,t) —0, (4)
at t,
where
t, =¢€/0 (5)
is the relaxation time constant. The solution of Eq. (4) is
p(r,t) =p(r,0) exp( —t/2,). (6)

A typical numerical value of ¢, as calculated from Eq. (5)
is 1.5 10~ s for copper, which is the value reported in
Refs. 1-3. One expects that on such a short time scale the
assumption of instantaneous response, as implied by Eq.
(2), would almost certainly be invalid.

The simplest model describing the relaxation of electri-
cal charge leading to an essentially correct result is derived
from the classical equation of motion of the average elec-
tron velocity, known as the “Drude model” of electrical
conduction.® This model is named after the German physi-
cist P. K. L. Drude who in 1900 proposed the existence of a
dense electron gas in metals. Even though the model is
classical, the Drude model accounts well for the conduc-
tion of electricity in metals where the electron distribution
is highly degenerate, as well as in nonmetals.

Consider an initially neutral conducting medium con-
taining in equilibrium rn, conduction electrons per unit vol-
ume, which are compensated by an equal concentration of
positive lattice ions. At the time ¢ = 0 a charge perturba-
tion p(r,0) is introduced. The volume integral of this func-
tion is required to vanish. Then the mean velocity v(r,f) of
mobile electrons at the point r satisfies the classical equa-
tion of motion of a particle of mass m and charge e that is
acted upon by an electric field E(r,?) and a viscous damp-
ing force that is proportional to the electron velocity, i.e.,
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av(r,t) +!= eE(r,t) - 7
at T m

The relaxation time constant 7 is of the order of magnitude
of the collision time. To a first approximation it may be
assumed that the damping force acts instantaneously, as
expressed in Eq. (7). It is not clear that Eq. (7) should
apply to electrons having kinetic energies deep within the
Fermi surface of a metal because the exclusion principle
prohibits the occupation of any state by more than one
electron. The explanation’ is that under the action of the
electric field E the entire Fermi surface makes a uniform
translation of magnitude q = eEr/h, so that each electron
acts effectively as if it were independent of the others.

Multiplying Eq. (7) by en,, we obtain an equation in the
mean current density J(r,?) = enyv(r,t) [note that this de-
finition approximates the actual electron number density
n(r,t) by its average n,], i.e.,

Iy  ImN _ Erop (8)

at T m
Next we take the divergence of both side of this equation,
and again substitute Egs. (1) and (3) to eliminate J and E.
If part of E is an external field, which is divergenceless,
then this part will not couple to the volume charge density
although it can induce surface charges. The resulting dif-
ferential equation is of second order in the charge density:

2
é gf;‘,t) +7 apg’t) + wpp(rt) =0, 9
where
W) = e’ny/me, (10)

is the square of the (angular) plasmon frequency® of the
conduction electrons in the metal. Equation (9) is the usu-
al differential equation of the damped harmonic oscillator
in the absence of a driving force.

We solve Eq. (9) by assuming an exponential time de-
pendence of the excess charge density

p(r,t) = p(r,0)exp( — st), (1D
which on substitution yields the relaxation rate s:
s=Q2n "' ti[w? — (21722 (12)

Equation (12) shows that for a conductor satisfying
w, T >4, theelectrical charge density relaxes during time 27
and is accompanied by oscillations in the charge density at
the frequency v, given by

v=[wl — (2r) 2]V (13)

Conforming to the assumption that the time 7 is indepen-
dent of frequency,’ its numerical value is estimated from
the dc conductivity according to the relation obtained from
Eq. (8), i.e.,

O = nse*r/m. (14)
Using the values o0=6x10° (Qcm)”' and
ny = 8.5% 10?2 cm 3 corresponding to those of copper,®
then Eq. (14) gives 7=2X10""s and from Eq. (10)
w, =1.6X10'° Hz.

The contrary condition w,7 <0.5 yields a pair of decay
rates, which in the limit

w,7<0.5 (15)
approach the expressions

I'=o0/¢ (16a)
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and
r,=r", (16b)

respectively. By Eq. (10), condition (15) is equivalent to
o<e/T, (17)

which is the limit of a very poor conductor and also the
limit in which Eq. (5) applies. The corresponding solution
for p(?) is

p(t) =Aexp( —TI'yt) + Bexp( -—I‘ét), (18)
where A and B are determined from initial conditions
A+ B=p(0),

Id+,B= — d;to).

Assuming that any initial time rate of change of p on the
time scale 7 is likely to be small, we take dp(0)/dt =0; then
B=~0since ", €T, and, therefore, most of the charge dis-
turbance relaxes at the slower rate I',.

It is of interest to make a brief estimate of the validity of
the approximations made in this calculation. Thus, in the
steps leading from Eq. (7) to (8), a term was neglected of
the order of the fraction n/n as large as the other terms so
that this approximation is valid when én/n,<1. In addi-
tion, a convection term equal to v Vv was neglected on the
left-hand side of Eq. (7). This quantity is of magnitude v*/
d, where d is a characteristic distance of the extent of the
charge disturbance. Setting E~pd /€,, we obtain as a con-
dition

v’/d <epd /€,

Eliminating v by the estimate v~eE7r/m yields for
én=p/e

Sn<mey/(er)>

Since the right-hand side of the inequality is of the order of
10%% m~* for a conductor, it is satisfied in almost any phys-
ical situation.

The Drude model can be derived within the framework
of semiclassical quantum mechanics from an electron ve-
locity distribution function in the state of momentum #gq,
i.e., f, (1,2), by solution of the Boltzmann equation.” Since
the distribution function specifies both the momentum and

J

the position of electrons, this approach is restricted to dis-
turbances of characteristic wavelength greater than the
typical deBroglie wavelength of electrons. The quantum
mechanically more rigorous approach, based upon the in-
dividual particle approximation, is available from linear
response theory!? for the longitudinal dielectric constant.

The longitudinal dielectric constant is defined in terms
of the charge density that is induced according to the linear
response theory by a “test charge” density at fixed spatial
and temporal frequencies, e.g., if p(w,q) and p,(w,q) rep-
reserﬁ the induced and test charge densities, respectively,
then

€(0,q) = po(@,9)/[p(@,q) + po(@,q) ]. (19)

In the absence of a test charge, the partial differential equa-
tion satisfied by p(r,?) is then obtained from

Epp(r,1) =0, (20)

where €, is the operator obtained from €(w,q) by the sub-
stitutions

. d
w—-i—,

21
ot (21a)

q— — i grad. (21b)

The result of the local theory, with g = 0, Eq. (9) is accord-
ingly obtained from the long-wavelength form of the di-
electric constant of a plasma

€(w,0) =1— /a0’ (22)

For finite g, the appropriate starting formula for the di-
electric constant of a metal is the Lindhard expression,'®
given by

fl‘(+q _f;(
= E(k+q) — E(k) ’

(0,q) =1— (—‘5—)2

€oq

(23)

where f is the Fermi distribution function and
E(k) = (#k)/2m is the energy of an electron in the free-
electron approximation. Some simple manipulations put
Eq. (23) in the following form:

A[2E(k) — E(k+q) — E(k—gq)]

2
coq) =1-1D 5

€& % [E(k)—E(k—q)+#iw][EKk) — Ek+q) —fiw)]

=1 ¢ Jx
- 2 Z 2 2 2’ (24)
(mepw™) 5 (1 + fik-q/me)? — (fg*/2mw)
r
The summation over momentum states is carried out by z S = o,
expanding Eq. (24) in powers of g up to quadratic terms in k
9,
Eﬁ(k'q =0,
€(0,q) =1 — &/ (mew)? Y £, .
? ; ) and

><[1~ 2%ikeq +3< L )2(k-q)2+---].
(mw) (mw)

Using the properties of the distribution function £, , i.e.,
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Y S (keq)? = no(k 2) g,
k
and upon including damping by adding the imaginary con-
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stant lia to o, we have for the dielectric constant of the
electron gas of a metal of cubic crystal symmetry

€(w,q)

=1— &ny/mey(w + Lia)*(1 +V°¢° + ), (25)
since by symmetry

((fk /m)?) = K((Fik /m)*) = 1/30,

where 7° = (v?) is the average of the square of the velocity
of the conduction electrons. Equation (25) gives the di-
electric constant of the noninteracting electron gas to sec-
ond order in g.

Finally, making the substitutions (21) in Eq. (25) and
operating on the density of charge p(r,t) leads to the fol-
lowing differential equation:

2
(;Tg-i—a—(;%—}—wf,p:EZVz \ (26)

where at zero degrees Kelvin:

0 = W} =$Ep/m,

where v is the velocity on the Fermi sphere’s surface and
E is the Fermi energy. Equation (26) shows that a sinu-
soidal charge disturbance is propagated with a phase veloc-
ity v, satisfying

o >V, >0=0.7vg,

where ve = 1.57 X 10°cm/s for copper. Since the smallest
wave vector at which a spatially harmonic disturbance
leads to significant dispersion is roughly of magnitude
w,/vg=1/a, where a is the lattice parameter, the term on
the right-hand side of Eq. (26) is normally negligible ex-
cept for charge density disturbances of spatial dimensions
smaller than a small multiple of a.

As an example, let the charge disturbance at t = 0 be
p(r,0) =pwhenr<aandp(r,0) =0 when r> a. Then the
solution of Eq. (26), for >0, is

2p0a

p(r,t) =
i

wa dk ka j,(ka) j, (kr)cos(e,t)e™ *"%,
’ (27)
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where
w, = (0? + 7%k 2 _}‘az)l/z.
Equation (26) also has time-independent solutions,

such as the following, describing the static screening of an
ion by free electrons

p(r)=Cr~"exp( — w,r/7). (28)
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