is the application to a semiconductor. I do not believe a
parallel development has been pursued in this case.

I traditionally devote a portion of my course in electricity
and magnetism to these issues. The simple form of the term
on the right-hand side of (4) makes it possible to generate
some interesting examples. Although mine have been a bit
contrived to keep the mathematics transparent, there is, nev-
ertheless, satisfying insight here for the student.
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Answer to Question #52. Group velocity and energy
propagation

The discussion of group velocities v,= dw/dk, by contrast
with phase velocities v,=w/k, of propagating waves as-
sumes three things. (i) The wave does not have a singular
spectrum with just one carrier frequency @, and one wave
number kq. It is actually a wave packet, hence the group
velocity plays a role. (ii) The bandwidth of its spectrum is
not too large (v, well defined). (iii) The dispersion is non-
linear, i.e., @ is not proportional to & for the eigenmodes,
Vg#U,.

Awati and Howes [Am. J. Phys. 64 (11), 1353 (1996)] ask
for a general proof of the relationship between group veloc-
ity and the velocity of energy propagation. Velocities are
conventionally defined by identifying a characteristic point at
some time ¢ and place r, watching as it moves within a time
At to another place r+ Ar, then setting v=Ar/A¢. If the
parameter is the energy density' S(r,), one would, for ex-
ample, associate the motion r(z) of the characteristic point
with a local maximum of the density, 8,5(r,1)=0. The link
between this formula in local space and the dispersion w(k)
is inevitably given by the Fourier transform of this defining
equation,

f d® kdwkS(k,w)exp[i(kr— wt)]=0. 1)
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A relation between Ar and Ar follows, because this equation
must hold for some (r,z) as well as for another (r+Ar,
t+At). For small At and Ar, a part of the integrand may be
expanded up to first order” in Ar and At,

keik(r+ Ar)—iw'(t+At))R,kei(kr—wt)+ ikei(kr—wt)

X (kAr—wAt). (2)

The following argument resembles a mathematical proof via
“‘induction”’ from ¢ to #+ A¢. The integral over the zeroth-
order term is assumed to be already zero. Ar and At are
brought in relation to each other to ensure that the integral
over the linear orders vanishes as well. We may introduce
the central frequency wy and wave number kg,

kAr— wAt=koAr— woAt+ (k—ko)Ar—(w—wg)Ar.

The first two terms on the right-hand side do not depend on
k. Their integrals with the kemnel (2) are consequently zero
by means of (1). This is the crucial reason why we do not
need to have kgAr—woAt=0 and v is not primarily con-
nected with v,. To ensure that the integrals over the third
and fourth terms are also zero, it is best to have (k—kg)Ar
=(w— wg)At, which means Ar/At=(w— wy)/(k—ky), ie.,
v=v,.%?

Thg motion of special wave packet points with the group
velocity rather than with the phase velocity is a mathematical
feature of the Fourier transformation, independent of the
spectral composition S of the wave amplitudes, the particular
dispersion, and which physical quantity waves. Even the fac-
tor k in the Fourier integral (1), representing the gradient and
maximum property in local space, is subordinate and may be
replaced by more general functions.

1...a product of two local quantities, as in the case of the Poynting vector, or
an (auto)correlation function in cases where the energy is a product of
wave functions in (k,w)-space, or something more general.

2An inexact justification is that the velocity is to be determined in the limit
of Ar,At—0.

3Provided that the spectral width of S(k,w) is small enough that the de-
rivative dw/dk can be well approximated by the quotient of the differ-
ences.

1t v, is constant in the region of nonzero S(k,w), this is valid for all
orders in A7 and A¢, as the analysis can be performed within the argument
of the exponential function (principle of the ‘‘stationary phase’’), even if
the factor k in the integrand is replaced be any function of k and w. This
property is useful, if, by some accidental characteristic of S(k,w), the
integral over the linear term vanishes for any pair of Ar and Az, and
vanishing of the first orders provides no information.

SDamped waves are generally described by complex valued dispersions
w(k) for the eigenmodes but real valued v,=0d Re w/dk. The Fourier in-
tegral is also defined for paths over the real k and w axes.
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Answer to Question #52. Group velocity and energy
propagation

The question by K. M. Awati and T. Howes [Am. J. Phys.
64 (11), 1353 (1996)] seeks a general proof showing that
wave energy propagates at the group velocity rather than the
phase velocity. No such proof exists because the result is not
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true. The arguments that connect group velocity and the ve-
locity of a wave packet are all approximations which hold
only for wide wave packets. A narrow wave packet will in
general change shape as it moves, so the term ‘‘velocity of
the wave packet’ is poorly defined. But in addition, in a
dispersive medium the group velocity dw/dk is a function of
k. A narrow wave packet has a broad spectral extent, i.e., it is
a superposition of sine waves with a wide range of values for
k. Thus for a narrow wave packet there is no one precise
group velocity...the term ‘‘group velocity’’ is also poorly
defined.

In this note we first supply a ‘‘hand-waving’’ argument
showing why a wave packet should in general be expected to
change its shape as it moves. We then give another hand-
waving argument connecting the group velocity with the ve-
locity of wave packets, and then show how that argument
breaks down for narrow wave packets. Finally we review
experimental results, where we bring up the point that dis-
persion is necessarily connected to dissipation, and where we
find situations in which the group velocity is greater than the
speed of light, and where it is actually negative! The phase
velocity will play a very small role in our discussion. This is
not surprising, because the phase velocity is an artificial con-
struct involving the speed of a sine wave, which—unlike any
real waveform—has infinite extent in both space and time.

Any finite wave consists of a superposition of sine waves.
If the medium is nondispersive then each of these constituent
sine waves moves at the same velocity, namely the single
phase velocity. If we were to step into a reference frame
moving at this velocity, then all of the component waves
would be stationary, so naturally the combination wave
packet moves without distortion. But if the medium is dis-
persive, then each constituent sine wave moves at a different
phase velocity. Stepping into the reference frame of any
given component, we would see all the other components
move ahead or fall behind. Only in exceptional circum-
stances will the sum of all this relative motion add up to a
wave packet that retains its shape.

Indeed, we can begin by considering the simplest possible
superposition, namely the superposition of two sine waves of
equal amphtude (Admittedly, this superposition is just as
infinite as the sine itself, but it gives an indication of what
transpires when an infinite number of sines superpose to
form a finite waveform.) Suppose the first sine component
has wave number k+ Ak and frequency w+ Aw, while the
second has wave number k— Ak and frequency v — Aw. The
total wave is

n(x,t)=A cos[(k+Ak)x—(w+Aw)t]
+A cos[(k—=Ak)x—(w—Aw)t],

which, after a little manipulation, can be written as
7(x,t)=2A cos(Akx— Awt)cos(kx — wt).

This is the well-known ‘‘beat’” wave which at any moment
has, if Ak<k, the appearance of a short-wavelength (A
=21/k) “‘hash’’ sine wave modulated by a long-wavelength
(N envelope= 27/ Ak) envelope. As time goes on, both the hash
and the envelope move. The period of the envelope at any
given point is Tepyelope=27/Aw. If we ignore the short-
wavelength hash and ask only how fast the envelope moves,
the direct answer is
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A envelope Aow
Tenvelope A k

v envelope

This beat wave is clearly a very special case, but it renders
plausible the notion that the envelope for a more general
waveform will move at a speed given by the slope of the
dispersion curve w(k) in the vicinity of those wave numbers
that are prominently represented in the waveform’s Fourier
spectrum. (Notice that even in this special case, it is only the
envelope of the wave that moves at the group velocity...the
detailed shape of the waveform does in fact change with
time.)

Everything about this argument—the picture of the beat
wave as a modulating envelope, the use of a single slope for
the dispersion curve appropriate to all of the component
wave numbers—relies on a waveform with a narrow spread
of wave numbers. [Narrow, of course, relative to the curva-
ture of the dispersion curve, so that w(k) as a function of k is
substantially linear over the range of wave numbers.] There
are a number of other arguments that produce the same
result: through Fourier methods,’ the treatment of a Gaussxan
wave packet,* and the method of stationary phase.’ All of
these rely on a wave packet with a narrow spread of wave
numbers and hence (through a generalized ‘‘Heisenberg un-
certainty principle’’) a broad range of positions.

If you are willing to go farther afield for a less direct
analogy, one is provided by traffic jams. The speed of indi-
vidual cars on a highway is very different from the speed at
which a high density of cars propagates. Indeed, a traffic jam
on an eastbound highway tends to creep slowly to the west.

If we wish to compare these ideas to experiment, one sub-
stantial obstacle remains. The above discussion ignored the
role of dissipation, but no such ‘‘dispersive, nonabsorbing”’
medium can exist. The Kramers—Kronig relations between
the real and imaginary parts of the dielectric constant,
namely

1 +o Im e(w')
Re e(w)=1+—Pf —dow’,
r —» w —w
1 +2 Re e(w')—1
Im e(w)=——Pf ——duv’,
T Jow o' -

show that the only nonabsorbing medium in existence is the
vacuum | é(w)=1]. One cannot have dispersion without dis-
sipation.

While at Bell Labs (in pre-Lucent days), one of us showed
expenmentally that, under the highly dispersive (and thus
highly dissipative) conditions near an absorption peak, the
group velocity of a light pulse could be ten times the speed
of light in vacuum, ¢. While this did lead to amusing specu-
lation on the properties of a hyper—relativistic telephone sys-
tem (“Complete your call before you’ve even dialed it!’"),
the reality is that energy nevcr traveled faster than the speed
of light. Theoretical work’”® showed that under relevant con-
ditions (including a thin media depth), an initially Gaussian
pulse would remain Gaussian, and that it would move for-
ward at the group velocity which, for varying wave number
k, could be greater than ¢, pass through *<, or even become
negative!

Here is a suggestive (but nonrigorous) way to understand
this phenomenon. Imagine a light pulse incident on a me-
dium consisting of dipoles modeled by damped simple har-
monic oscillators. Assume that the pulse’s frequency spec-
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trum spread is smaller than the spectral width of the damped
oscillators or, equivalently, that the time for the pulse to pass
over a given point is longer than the response time of the
oscillators. Then, when the leading edge of the pulse hits one
point in the medium, the medium does not have time to
respond and there is minimal polarization. When the peak of
the pulse hits that same point, the medium has responded and
is polarized strongly. When the trailing edge of the pulse hits
that point, the medium remains polarized due to the effects
remaining from the peak of the pulse. Thus the leading and
trailing edges of the pulse behave quite differently. The po-
larized material radiates and thus affects the net absorption
of the puise, so there is greater absorption at the trailing edge
than at the leading edge. The net effect is to cut off the
trailing edge of the pulse, so the peak moves forward at very
high velocity. (For an initially Gaussian wave packet, the net
effect curiously maintains a substantially Gaussian profile.)
For the very thin epilayer samples used in our experiment,
calculations showed that the peak of the exiting pulse could
leave the sample before the peak of the incident pulse en-
tered the sample (negative group velocity). The exiting
pulse, however, had a much smaller amplitude than the inci-
dent pulse, and if the exiting pulse were superposed over an
image of where the incident pulse would have been had it not
gone through the medium, the exiting pulse would always be
contained within the envelope of the unmodified incident
pulse. Thus the speed of energy transfer never exceeded the
speed of the incident pulse and was safely less than the speed
of light.
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Answer to Question #54. Chapter summaries: Blessing
or curse?

Ralph Baierlein [Am. J. Phys. 64 (12), 1448 (1996)] in-
vites comments on the seemingly ubiquitious practice of at-
taching summaries to the chapters of physics textbooks.

One of the skills that I would like my students to have is
that of summarizing the high points of an article, a chapter, a
topic from a text, an outline of a proof, and so on—
something that might be placed on a 3 in.X5 in. card, for
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example. I have assigned class group exercises, homework,
and even test questions asking for such summaries. For years
now this practice has been thwarted by chapter summaries
which almost all texts are now including. How can you dis-
tinguish where the author’s words end and the student’s be-
gin? What do you say to the student who claims that his or
her summary is identical to the author’s?

Students do bypass the text and rely heavily on the sum-
maries for problem solving. The problem, however, is not
Just with summaries. While summaries are seen as an aggra-
vation, an even greater aggravation to me are those texts that
group the problems by chapter sections. If students can’t find
the formula to solve the problem in the summary, they can
then go to the particular referenced section and usually with
minimal scanning find a clue.

I would like students to learn to read the text thoroughly
and engage the author in conversation by asking questions at
every step of the way. I try to do that by requiring group
exercises in class with articles copied from elsewhere that
deal at least peripherally with the topic at hand. Bolton in his
excellent book, Patterns in Physics, provides me with lots of
suggestions. In particular, he starts off his chapter on ‘‘En-
ergy’’ with four different definitions of energy from four
excellent physics books (none of which have summaries at
the backs of chapters) that always generate heat and light
when students try to reconcile their current notion of energy
with those of the experts.

Every review that I do for authors or publishers includes a
note that they should drop the summaries. If I get a response,
it usually includes something akin to ‘‘Everyone else is do-
ing it, so we have to.”

If we want back-of-the-chapter-problem-solvers only, this
trend is in the right direction, leading to little books with all
the possible formulas of physics collected therein with
sample applications, as seen in study guides for passing stan-
dardized tests. If we want to encourage creative problem
solving, we need to get rid of the summaries and insert more
probing questions and problems at appropriate places
throughout the textual material, followed by collections of
sample problems that might require the student to reach back
to previous chapters or even previous classes in order to
solve them.
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Answer to Question #60. Interference of two
independent sources

There seems to be an ongomg debate about the meaning of
Dirac’s famous remark’ that ‘‘Interference between two dif-
ferent photons never occurs’” (see Ref. 2). I definitely agree
with Fewell® that interference between two independent
sources of light can occur and has been experimentally
shown to occur. It is, however, in my opinion misleading to
confuse independent sources with different photons. Since a
superposition principle (in spacetime) is valid for solutions
of Maxwell’s equations, classical light waves must always
interfere, although this interference may remain without ef-
fect for wave packets that do not overlap in spacetime. (This
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