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I. PROBLEM C. Fourier analysis

Consider a variant on the physical situation of “slow ApPly the transformations between an incident monochro-
light” 2 in which two closely spaced spectral lines are nowmatic wave and the wave in and beyond the medium to the
both optically pumped to show that the group velocity can bd-ourier analysis of an incident pulse of forftz/c—t).
negative at the central frequency, which leads to apparent
superluminal behavior. D. Propagation of a sharp wave front
. ' In the approximation thain varies linearly withw, de-
A. Negative group velocity duce the waveforms in the regions<@<a anda<z for an
incident pulses(z/c—t), wheredis the Dirac delta function.

In more detail, consider a classical model of matter in : .
which spectral lines are associated with oscillators. In par-S_hOW that the pulse emerges out of the gain regiar-at at

ticular, consider a gas with two closely spaced spectral lineimet=a/vy, which appears to be earlier than when it enters

of angular frequencies; ,= wo* A/2, whereA<w,. Each j[h|s_ region if the_group velocity is negative. Show also that

line has the same dambing constémtd spectral widthy. inside the negative group ve]ocﬂy medium a pulse propa-
Ordinarily, the gas would exhibit strong absorption of 98t€s backwards from=a at timet=a/v,<0 toz=0 att

light in the vicinity of the spectral lines. But suppose that =0, at which time it appears to annihilate the incident pulse.

lasers of frequencie®; and w, pump both oscillators into

inverted populations. This can be described classically by propagation of a Gaussian pulse

assigning negative oscillator strengths to these oscilldtors.

Deduce an expression for the group veloaity o) of a As a more physical example, deduce the waveforms in the
pulse of light centered on frequenay, in terms of the(uni-  regions 6<z<a and a<z for a Gaussian incident pulse
valen) plasma frequency,, of the medium, given by Eqe” (@027 giwo@e—0  Carry the frequency expansion of

wn(w) to second order to obtain conditions of validity of the
) A7Ne? analysis such as maximum pulse widthmaximum lengtta
Wp= T (1) of the gain region, and maximum time of advance of the

emerging pulse. Consider the time required to generate a
) ) pulse of rise timer when assessing whether the time advance
whereN is the number density of atoms, aedndmare the iy 5 negative group velocity medium can lead to superlumi-
charge and mass of an electron. Give a condition on the lingg| signal propagation.

separatiom\ compared to the linewidtl such that the group
velocity v4(wo) is negative.
In a recent experiment by Wareg al.* a group velocity of |l SOLUTION

vg=—c/310, w_herecl|s the speed.of light Invacuum, was o concept of group velocity appears to have been first
d(.amonstrated.m cesium vapor using a pair qf spectral I'negnuncia\ted by Hamilton in 1839 in lectures of which only
with  separation A/2m~2MHz and linewidth ¥/2m  gphiracts were publish@dThe first recorded observation of
~0.8 MHz. the group velocity of awate) wave is due to Russell in
1844° However, widespread awareness of the group velocity
dates from 1876 when Stokes used it as the topic of a
Smith’s Prize examination papéiThe early history of group
velocity has been reviewed by Haveldtk.

H. Lamb’ credits A. Schuster with noting in 1904 that a
negative group velocity, i.e., a group velocity of opposite
sign to that of the phase velocity, is possible due to anoma-

us dispersion. Von Lad® made a similar comment in

B. Propagation of a monochromatic plane wave

Consider a wave with electric fiel@,e'“@c™Y that is
incident fromz<<0 on a medium that extends frars-0 toa.
Ignore reflection at the boundaries, as is reasonable if th

index of refractionn(w) is near unity. Particularly simple 945 | amb gave two examples of strings subject to external
results can be obtained when you make (inephysical as-  stentials that exhibit negative group velocities. These early
sumption that thewn(w) varies linearly with frequency considerations assumed that in case of a wave with positive
about a central frequenay,. Deduce a transformation that group and phase velocities incident on the anomalous me-
has a frequency-dependent part and a frequency-independefitim, energy would be transported into the medium with a
part between the phase of the wave #e10 to that of the positive group velocity, and so there would be waves with
wave inside the medium, and to that of the wave in thenegative phase velocity inside the medium. Such negative
regiona<z. phase velocity waves are formally consistent with Snell’'s
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law'! (since 6,=sin"Y[(n;/n)sin 6] can be in either the first 0.000002

or second quadrantbut they seemed physically implausible +Re(n-1)

and the topic was largely dropped.  Im(n) :\.-
Present interest in negative group velocity is based on p .

anomalous dispersion in a gain medium, where the sign of 0 ] .\ e

the phase velocity is the same for incident and transmitted _\‘ : \;’ f

waves, and energy flows inside the gain medium in the op- b, ﬂ 3

posite direction to the incident energy flow in vacuum. Fax »
The propagation of electromagnetic waves at frequencies e

near those of spectral lines of a medium was first extensively -0.000002 - .

discussed by Sommerfeld and Brillodihwith emphasis on frequency

the distinction between signal velocity and group velocity
when the latter exceeds The solution presented here is
based on the work of Garrett and McCumbgas extended
by Chiaoet al*'° A discussion of negative group velocity
in electronic circuits has been given by Mitchell and Chifo.

Fig. 1. The real and imaginary parts of the index of refraction in a medium
with two spectral lines that have been pumped to inverted populations. The
lines are separated by angular frequedAcgnd have widthgy=0.4A.

force —my;X, where the dot indicates differentiation with

A. Negative group velocity respect to time. The equation of motion in the presence of an
electromagnetic wave of frequenayis
In a medium of index of refraction(w), the dispersion
. . . eE ek .
relation can be written K4 v X+ 02X = —— = — D glot. 6)
‘yl J m m
wn
k= o (20 Hence,
2 2
wherek is the wave number. The group velocity is then ., _ eE L :e_E wi— tlyje )
given by m wf—wz—iij m (wf—w2)2+yj2w2'
= R{d“’ _ 1 and the polarizability is
o=Re——|= s
dk| Rgdk/de] o2 wjz—a)z-l-i'ij )
c c “‘E(wjz_wz)eryjzwz- (8)

~R4d(wn)/de] n+wR4dn/de]’ .
(3) In the present problem we have two spectral lineg,

We see from Eq(3) that if the index of refraction de = wo* A/2, both of oscillator strength-1 to indicate that the

creases rapidly enough with frequency, the group velocit)POpwations of both lines are inverted, with damping con-
can be negative. It is well known that the index of refractionStant571: 2= - In this case, the polarizability is given by

decreases rapidly with frequency near an absorption line, e (wo—A2)?—w’+iyow
where “anomalous” wave propagation effects can océur. a=— (00— A2 7= D)2+ 72?2
However, the absorption makes it difficult to study these @o @ ye
effecff.l;rgeligsight of Garrett and McCumbtand of Chiao e (wotA2)2—w’+iyw
et al.”»*""is that demonstrations of negative group ve- - 2_, N2, 2 2
locity are possible in media with inverted populations, so M ((0o+A2)"= ")+ Y0
that gain rather than absorption occurs at the frequencies of &2 wi—Awy— w’+iyw
interest. This was dramatically realized in the experiment of T (02— Ao 022t 2wl
Wanget al* by use of a closely spaced pair of gain lines, as (0p=Awp= )™+ y
perhaps first suggested by Steinberg and Chiao. & w2+ 2Awo— wi+iyw

We use a classical oscillator model for the index of refrac-
tion. The indexn is the square root of the dielectric constant
€, which is in turn related to the atomic polarizabilidyac-  \yhere the approximation is obtained by the neglect of terms
cording to in A? compared to those A w,.

D=eE=E+47P=E(1+47Na) (4) For a probe beam at frequeney the index of refraction
(5) has the form

(€)

m (w(2)+ Awy— 02)°+ y?w?’

(in Gaussian units whereD is the electric displacemeri,is
the electric field, andP is the polarization density. Then, the ®
index of refraction of a dilute gas is N(w)~1-

n=+e~1+2mNa. (5)

The polarizability « is obtained from the electric dipole
momentp=ex= «E induced by electric fielE. In the case
of a single spectral line of frequenay;, we say that an wherew, is the plasma frequency given by E@). This is
electron is bound to théixed) nucleus by a spring of con- illustrated in Fig. 1.
stantK:mwjz, and that the motion is subject to the damping The index at the central frequenay, is

2
P

2 (w%—AwO— w2)2+ yzwz

wS—AwO—wz-H'ya)

w%-ﬁ-Awo— w’+iyw
J’_
(wé-i— Awy— 0?)?+ Yy’ w?

, (10
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2, .2 c A2
Y7 W vg~—35 3. 17)
AN wp
N\ (0.75,0.25) A value of vy~ —c/310 as in the experiment of Wang cor-

N A2 2 responds toA/wp~1/12. In this case, the gain length
7 < (2,0~ /0% A?c/yw? was approximately 40 cm.
N\ N For later use we record the second derivative,

N d?(wn) wiy(3A2=9?) Wl y

N Tdw? | T8 T (azr o THRraT
“o

(18

where the second approximation holdsyiA.

Fig. 2. The allowed regioii14) in (A?,v?) space such that the group ve- . .
locity is negative. B. Propagation of a monochromatic plane wave

To illustrate the optical properties of a medium with nega-
tive group velocity, we consider the propagation of an elec-

w2 w2 tromagnetic wave through it. The medium extends fram
Mo ~li—PY g % 11) =0 toa, and is surrounded by vacuum. Because the index of
(wo) 7.2 2 11 ; ; oo \
(A°+ ¥ )wo A% g refraction(10) is near unity in the frequency range of inter-

est, we ignore reflections at the boundaries of the medium.
A monochromatic plane wave of frequeneyand incident
om z<0 propagates with phase velocityin vacuum. Its
electric field can be written

E (z.t)=Ege“ce et (z<0). (19

Inside the medium this wave propagates with phase velocity
¢/n(w) according to

where the second approximation holds whergA. The
electric field of a continuous probe wave then propagate?
according to r

E(z,t)=g(kz-wot) = gie(n(wg)Z/c—1)
%eﬂ[Azc/yw(le)]eiwo(z/cft)_ (12)

From this we see that at frequeney the phase velocity is,

and the medium has an amplitude gain lengfie/ yo?. E.(z,t)=Eqe'“"?ce et (0<z<a), (20)
To obtain the group velocityg) at frequencyw,, we need  \yhere the amplitude is unchanged since we neglect the small
the derivative reflection at the bounda= 0. When the wave emerges into
d(wn) 2wi(A2—»?) vacuum atz=a, the phase velocity is agaig but it has
o i 1— (Ap2+—2)2 (13  accumulated a phase lag @f{c) (n—1)a, and so appears as
wg Y E,(2,t) = Egelva(n-Dicgiudlcg—iot
where we have neglected termsArand y compared taog. e iwanca—iw(t—(z-a)c)
From Eq.(3), we see that the group velocity can be negative =Eoe € (a<2). (22)
if It is noteworthy that a monochromatic wave for a has the
A2 22 1[A2 2\ 2 same form as that inside the medium if we make the
—— 7_22 e 7_2 (14)  frequency-independent substitutions
wp, w, 2lo; o,
z—-a
. . 2 2 - —_——
The boundary of the allowed regigh4) in (A<, y“) space is z—a, 1=t c (22

a parabola whose axis is along the lipgé= — A2, as shown
in Fig. 2. For the physical region®=0, the boundary is
given by

Since an arbitrary waveform can be expressed in terms of
monochromatic plane waves via Fourier analysis, we can use
these substitutions to convert any wave in the regietiz0

2 A? A? <a to its continuation in the regioa<z.

- 1+4?_1_ w2 (15 A general relation can be deduced in the case where the
P P second and higher derivatives @h(w) are very small. We
Thus, to have a negative group velocity, we must have can then write

<

w

TN

A<V2wy, (16 c
on(w)=~won(wg) + — (00— 0)), (23
which limit is achieved whery=0; the maximum value of Ug
is 0.50, whenA =0.866w), . whereuv is the group velocity for a pulse with central fre-

Near the boundary of the negative group velocity regionquencyw,. Using this in Eq.(20), we have
|vg| exceeds, which alerts us to concerns of superluminal

. . . . . ~ iwgz(n(wg)/c— 1l 4) pi wZ/ —iwt
behavior. However, as will be seen in the following sections, ~ Ew(Z1)=Ege “07 @0t a'el®"oe (0<z<a).

the effect of a negative group velocity is more dramatic when (24)
lvg| is small rather than large. In this approximation, the Fourier componegy(z) at fre-

The region of recent experimental interestigA<w,, guencyw of a wave inside the gain medium is related to that
for which Egs.(3) and (13) predict that of the incident wave by replacing the frequency dependence
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Vacuum Negative group velocity medium Vacuum

Fig. 3. A snapshot of three Fourier components of a pulse in the vicinity of a negative group velocity medium. The component at the central wgvelength

is unaltered by the medium, but the wavelength of a longer wavelength component is shortened, and that of a shorter wavelength component is lengthened
Then, even when the incident pulse has not yet reached the medium, there can be a point inside the medium at which all components have the same phase
and a peak appears. Simultaneously, there can be a point in the vacuum region beyond the medium at which the Fourier components are again all in phase,
and a third peak appears. The peaks in the vacuum regions move with group velgeity but the peak inside the medium moves with a negative group

velocity, shown aw = —c/2. The phase velocity,, is ¢ in vacuum, and close toin the medium.

e'“dc py e'“?vg, i.e., by replacingz/c by z/vy, and multi-  to Eq. (19), we see that the peak occurs whenact. As
plying by the frequency-independent phase factorusual, we say that the group velocity of this wavecis
el @oZ(n(wo)/c=1hg) Then, using transformatiof22), the wave  vacuum.
that emerges into vacuum beyond the medium is Inside the medium, Eq.24) describes the phases of the
E (z,t)~Eoe“”oa(”(‘”o)"’*l’”g) _components, which all have a common frequency-
@ ' ' independent phaseyz(n(wg)/c— 1lvg) at a givenz, as well
X gle(Zeallle=1hg)g=iot  (g<z), (25  as a frequency-dependent paitz/v,—t). The peak of the
The wave beyond the medium is related to the incident wav@UIS€ occurs when all the frequency-dependent phases van-
by multiplying by a frequency-independent phase, and b;}Sh? the ovgrall frequency-independent phase does not affept
replacing z/c by zlc—a(llc—1lg) in the frequency- the pulse size. Thus, the peak of the pulse propagates within

dependent part of the phase. the medium according t=v4t. The velocity of the peak is
The effect of the medium on the wave as described byg. the group velocity of the medium, which can be nega-
Egs.(24) and(25) has been called “rephasing.” tive.
The “rephasing” (24) within the medium changes the
C. Fourier analysis and “rephasing” wavelengths of the component waves. Typically the wave-

length increases, and by greater amounts at longer wave-
Itengths. A longer time is required before the phases of the
'waves all become the same at some paintside the me-
dium, so in a normal medium the velocity of the peak ap-
% it pears to be slowed down. But in a negative group velocity
E(z,t)=f(z/c—t)=fﬁwEw(z)e do (z<0), (26)  medium, wavelengths short compared\ipare lengthened,
long waves are shortened, and the velocity of the peak ap-

wave (19) and its continuation in and beyond the medium
(24) and (25), imply that an incident wave

whose Fourier components are given by pears to be reversed.
1 [« _ By a similar argument, Eq25) tells us that in the vacuum
E,(2)= —f E(z,t)e'“tdt, (27 region beyond the medium the peak of the pulse propagates
27 ) . S
according toz=ct+a(l/c—1h,). The group velocity is
propagates as againc, but the “rephasing” within the medium results in a
f(zlc—t) (z<O) shift of the position of t_he peak by the amoual_{l/(_:
fouz(n(@n)/c— 1) —1lvg). In a normal medium where Qv <c the shift is
E(zt)~ eromro vf(zlvg—t) (0<z<a) 28) negative; the pulse appears to have been delayed during its

passage through the medium. But after a negative group ve-
locity medium, the pulse appears to have advanced!

This advance is possible because, in the Fourier view,

An interpretation of Eq(28) in terms of “rephasing” isas each component wave extends over all space, even if the
follows. Fourier analysis tells us that the maximum ampli-pulse appears to be restricted. The unusual “rephasing” in a
tude of a pulse made of waves of many frequencies, each efegative group velocity medium shifts the phases of the fre-
the form E,(z,t)=Eq(w)e'?®) =Ey(w)e' K@z ottdo(@))  quency components of the wave train in the region ahead of
with Eq=0, is determined by adding the amplitudeg ). the nominal peak such that the phases all coincide, and a
This maximum is achieved only if there exist poinig? peak is observed, at times earlier than expected at points
such that all phase#(w) have the same value. beyond the medium.

For example, we consider a pulse in the region0 As shown in Fig. 3 and further illustrated in the examples
whose maximum occurs when the phases of all componeri the following, the “rephasing” can result in the simulta-
frequencies vanish, as shown at the left of Fig. 3. Referringqieous appearance of peaks in all three regions.

glwoan(wol/e=1hg)f(z/c—t—a(llc— 1))
(a<2).
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D. Propagation of a sharp wave front s

To assess the effect of a medium with negative group ve- E
locity on the propagation of a signal, we first consider a
waveform with a sharp front, as recommended by Sommer-

=-175

P

feld and Brillouin®? —
As an extreme but convenient example, we take the inci-
dent pulse to be a Dirac delta functioB(z,t)=Eqd(z/c c §% om0
—1). Inserting this in Eq(28), which is based on the linear
approximation(23), we find
Gain
Eod(zlc—t) (z<0) E 1=128
Ege'@odn(wol/e=thg) 5(z/y,—t) (0<z<a)
E(z,t)~ :
(z,1) Eoemoa(n(wo)/cfl/vg)5(Z/C_t_a( 1/c— 1/09)) Gai"g
(a<z). ( ) E t=-100 OA E%
? JANE |\
| i
Gain
According to Eq.(29), the delta-function pulse emerges : A
from the medium az=a at timet=a/vg. If the group ve- E t--75 ol 3
locity is negative, the pulse emerges from the medium before j J \
it enters at=0! i
A sample history of Gaussiah pulse propagation is illus- Gain
trated in Fig. 4. Inside the negative group velocity medium, [11 : &
an (antjpulse propagates backwards in space frora at E t=-50 $3 $
time t=a/vy<0 to z=0 at timet=0, at which point it ap- j s \
pears to annihilate the incident pulse. i 3 ‘

[0
[
S

This behavior is analogous to barrier penetration by a rela-
tivistic electrorf® in which an electron can emerge from the & -
far side of the barrier earlier than it hits the near side, if the E t=-25 o4 i
electron emission at the far side is accompanied by positron j M4 j \
emission, and the positron propagates within the barrier so as
to annihilate the incident electron at the near side. In the &
Wheeler—Feynman view, this process involves only a single ;
electron which propagates backwards in time when inside E t=0 3
the barrier. In this spirit, we might say that pulses propagate
backwards in timgbut forward in spaceinside a negative
group velocity medium.

The Fourier components of the delta function are indepen-
dent of frequency, so the advanced appearance of the sharp
wave front as described by E@9) can occur only for a gain
medium such that the index of refraction varies linearly at all
frequencies. If such a medium existed with negative slope .
dn/dw, then Eq.(29) would constitute superluminal signal Gain &

t=50 2

N,
i —
"

Gain

.
P

propagation.

However, from Fig. 1 we see that a linear approximation
to the index of refraction is reasonable in the negative group j
velocity medium only folw — wo| < A/2. The sharpest wave :
front that can be supported within this bandwidth has char-
acteristic rise timer~1/A.

For the experiment of Wangt al. where A/27~10° Hz, Fig. 4. Ten “snapshots” of a Gaussian pulse as it traverses a negative group
an analysis based on E@3) would be valid only for pulses ve[ocity rggion_ (0<z<50), according to E¢31). The group velocity in the
with 7=0.1us. Wanget al. used a pulse withr~1 s, 93N mediumiwg=-c/2, andc has been set to 1.
close to the minimum value for which E@Q?J) is a reason-
able approximation.

Since a negative group velocity can only be experienceg. Propagation of a Gaussian pulse
over a limited bandwidth, very sharp wave fronts must be
excluded from the discussion of signal propagation. How- We now consider a Gaussian pulse of temporal length
ever, it is well known? that great care must be taken when centered on frequenay, (the carrier frequendy for which
discussing the signal velocity if the waveform is not sharp. the incident waveform is

-200 -150 -100 -50 0 50 100 1560 200 250
z
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E(Z,t) — Eoef(zlcft)Z/ZTzeiwOZ/Cefiwot (Z<0) (30)
Inserting this in Eq(28) we find
E e (zlc—1) 21272 IwO(Z/C—t) (Z<0)
~(2vg=)?I27% i wg(N(wg)Z/c—1) (0<z<a)
E(Z!t): . 20 2
Eoelwoa(n(wo)—1)/ce—(z/c—a(1/c—1/vg)—t) 127
x el @@=t (gq<z).
(32)

The factore'@oa("(@o)=1)¢ in Eq. (31) for a<z becomes

e® rzﬂa’Azc using Eqg.(11), and represents a small gain due to
traversing the negative group velocity medium. In the experi-,

ment of Wanget al, this factor was only 1.16.

whereA is evaluated ar=a here. As expected, the forms
(36) and (38 revert to those of Eqg.(31) when
d?(wn(wg))/dw?=0.

So long as the factoA(a) is not greatly different from
unity, the pulse emerges from the medium essentially undis-
torted, which requires

a 1 AZAA
24w n

using Egs.(18) and (37). In the experiment of Wangt al,
this condition is that/c7<1/120, which was well satisfied
with a=6 cm andc7=300m.

As in the case of the delta function, the centroid of a
Gaussian pulse emerges from a negative group velocity me-
dium at time

(39

We have already noted in the previous section that the

linear approximation town(w) is only good over a fre-
guency interval aboub, of orderA, and so Eq(31) for the

pulse after the gain medium applies only for pulse widths

1
K.
Further constraints on the validity of E(B1) can be ob-
tained using the expansion afn(w) to second order. For
this, we repeat the derivation of E(B1) in slightly more

detail. The incident Gaussian pul&20) has the Fourier de-
composition(27),

(32

T=

Eoe T(w wg) /ZeIwZ/C
2

(33

E.(2)= (z<0).

We again extrapolate the Fourier component at frequency

into the regionz>0 using Eq.(20), which yields

(0= wg)?2niwnzic

—E e e (0<z<a).

N

We now approximate the factesn(w) by its Taylor ex-
pansion through second order:

E.(2)= (34)

0N(©)~won(wg) + — (0—wp)
Ug

1d?(wn) ) s
+§_2_dw (w—wg)*. (35)
@o
With this, we find from Eqs(26) and (34) that
E(Z,t) = Ee—(zlvg—t)Z/ZAZTZei mon(mo)z/ce—iwot
(0<z<a). (36)
where
d?(wn)
2 i
AY(z)=1-i e 37)

@g

The waveform forz>a is obtained from that for &z<<a by
the substitution$22) with the result

E(z,t)= — gi@0a(n(wp)~ /cg=(Z/e-a(lle—lvg) - t)2/2A%72

X glwodCeivot  (g<z), (39)
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a
t=—<0,
Ug

(40)

which is earlier than the time=0 when the centroid enters
the medium. In the experiment of Wamg al., the time ad-
vance of the pulse wasa/|vy|~300a/c~6x10°s
~0.06r.

If one attempts to observe the negative group velocity
pulse inside the medium, the incident wave would be per-
turbed and the backwards-moving pulse would not be de-
tected. Rather, one must deduce the effect of the negative
group velocity medium by observation of the pulse that
emerges into the regiarr>a beyond that medium, where the
significance of the time advan¢40) is the main issue.

The time advance caused by a negative group velocity
medium is larger whenuv| is smaller. It is possible that
lvg|>c, but this gives a smaller time advance than when the
negative group velocity is such that,|<c. Hence, there is
no special concern as to the meaning of negative group ve-
locity when|vg|>c.

The maximum possible time advantg,, by this tech-
nigue can be estimated from Eq47), (39), and(40) as

1A

tmax

T 12 y

The pulse can advance by at most a few rise times due to
passage through the negative group velocity medium.

While this aspect of the pulse propagation appears to be
superluminal, it does not imply superluminal signal propaga-
tion.

In accounting for signal propagation time, the time needed
to generate the signal must be included as well. A pulse with
a finite frequency bandwidtA takes at least time~ 1/A to
be generated, and so is delayed by a time of order of its rise
time 7 compared to the case of an idealized sharp wave front.
Thus, the advance of a pulse front in a negative group veloc-
ity medium by =<7 can at most compensate for the original
delay in generating that pulse. The signal velocity, as defined
by the path length between the source and detector divided
by the overall time from onset of signal generation to signal
detection, remains bounded by

As has been emphasized by Garrett and McCufilzerd
by Chiao!®®the time advance of a pulse emerging from a
gain medium is possible because the forward tail of a smooth
pulse gives advance warning of the later arrival of the peak.
The leading edge of the pulse can be amplified by the gain
medium, which gives the appearance of superluminal pulse

Ar~1. (42)
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pulse width is narrower than the gain regigdn violation of
condition(39)], as shown in Fig. 4. Here, the gain region is
0<z<50, the group velocity is taken to bec/2, andc is
defined to be unity. The behavior illustrated in Fig. 4 is per-
haps less surprising when the pulse amplitude is plotted on a
logarithmic scale, as in Fig. 5. Although the overall gain of
the system is near unity, the leading edge of the pulse is
amplified by about 70 orders of magnitude in this example
[the implausibility of which underscores that conditi(89)
cannot be evadddwhile the trailing edge of the pulse is
attenuated by the same amount. The gain medium has tem-
porarily loaned some of its energy to the pulse permitting the
leading edge of the pulse to appear to advance faster than the
speed of light.

Our discussion of the pulse has been based on a classical
analysis of interference, but, as remarked by Difadlassi-
cal optical interference describes the behavior of the wave
functions of individual photons, not of interference between
photons. Therefore, we expect that the behavior discussed
above will soon be demonstrated for a “pulse” consisting of
a single photon with a Gaussian wave packet.
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. PROBLEM II. SOLUTION

Ferrofluid$ are stable suspensions of magnetic particles Magnetic body forces, surface tension, viscous drag, and

having linear dimension on the order of 10 nm. Due to Vig_grawty combine to produce the peculiar behavior observed

orous Brownian motion the magnetic particles assume ranhere‘ We focus on the magnetic body forces as the primary
- ) . 9 P3 explanation for the question posed above. Figure 3 shows a
dom orientations rendering the suspension as a whole par

: . . gide view of one of the “cones” of ferrofluid which form the
magnetic. These complex fluids show a variety of phe—t

. T . o-dimensional crystalline array beneath the magnet. These
nomena and instabilities that amuse and delight students azﬁ_‘ y y 9
a

h iké.B h fluid di i mps have a nearly ellipsoidal shape above the water sur-
teachers aliké.Because these Tluids are used In a variety ok, \yith the symmetry axis parallel to the applied field.

applications including rotary seals, sensors, and actuatorspther studies show that ferrofiuid droplets submerged in an
they are commercially avallapfe. . immiscible fluid deform into ellipsoids and align parallel to
Figure 1 shows the experimental apparatus for viewingpne direction of a uniform external magnetic fi@l§olutions
and recording the response of a ferrofluid film trapped at amaye |ong existed for the magnefielectrid field of an el-
air—water interface. Figure 2 shows recorded images for gpsoid of permeabilityu (dielectric constant) subjected to
drop (~40 ul) of mineral-oil-based ferrofluftiintroduced to g uniform external field in a surrounding medium of perme-
the surface of clean, filtered, de-ioniz€kB M()) water. The  gpjlity 11, (dielectric constant,).” When the symmetry axis
hydrophobic ferrofluid spreads uniformly over the surface ofof the ellipse is aligned parallel to the external field direction,
water contained in a Petri dish. We gently stir the surface tqhe field inside the ellipse is uniform and parallel to the ap-
emulsify the film, creating a collection of dark flat circular plied field (at large distancesThus, to first order the “ellip-
drops of ferrofluid as recorded in Fig.(&. Figure 2b)  soidal cones” behave like little magnets oriented parallel to
shows the film 1 min after a cylindrical magnet having athe external field and so move along the water surface to the
radius of 1 cm is introduced with the axis of symmetry ver-strongest field regions located directly beneath the cylindri-
tical and the lower end 3.3 cm above the ferrofluid film. Thecal magnet. However, the magnetic field induced in each of
ferrofluid film clears from directly beneath the magnet butthese cones is aligned parallel with the neighboring cone
moves radially inward at large distances, forming tear-ields; therefore, the cones repel one another in the plane of
shaped drops with the clearer regions streaming outwardhe interface just like parallel oriented permanent magnets. A
The ferrofluid collects in a ring structure at a finite radiuscrystal lattice result&. These results are qualitative, but in-
(which is most dense at radius1.0 cm) from the center of tuitive, given our experience playing with permanent mag-
the magnetic field symmetry axis. As the ferrofluid builds up,nets.
clumps or cone-shaped structures develop. As the conesHow do we understand the quite different behavior of the
grow, they become unstable and migrate one at a time intlm? Rosensweitygives a general derivation of the body
the central region. Figure(® taken at 3 min shows the forcef or force per unit volume, which reduces for ferrofluid
clumping in the ring-shaped structure with one cone at twcsuspensions to
o'clock escaping to the central region. Finally in Figdg _ . _
taken 21 min after introducing the magnet, a regular “crys- 1= 1o(M-VIH= oM VH, @
talline” array of well-separated ferrofluid cones has formed.whereu is the vacuum permeabilityy is the magnetic field
Yet there remains a ferrofluid film ring surrounding this crys- strength, andM is the magnetization in the film volume el-
talline structure. ement. This functional form suggests the Kelvin force den-
How is it possible that the ferrofluid is both attracted to sity on an isolated body, except that the local fieldre-
(cones and repelled frontfilm) the region directly below the places the applied fielél,. Intuitively, we understand this
cylindrical magnet? body force to be like the force acting on a magnetic dipole.
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