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I. PROBLEM

Consider a variant on the physical situation of ‘‘slo
light’’ 1,2 in which two closely spaced spectral lines are n
both optically pumped to show that the group velocity can
negative at the central frequency, which leads to appa
superluminal behavior.

A. Negative group velocity

In more detail, consider a classical model of matter
which spectral lines are associated with oscillators. In p
ticular, consider a gas with two closely spaced spectral li
of angular frequenciesv1,25v06D/2, whereD!v0 . Each
line has the same damping constant~and spectral width! g.

Ordinarily, the gas would exhibit strong absorption
light in the vicinity of the spectral lines. But suppose th
lasers of frequenciesv1 and v2 pump both oscillators into
inverted populations. This can be described classically
assigning negative oscillator strengths to these oscillator3

Deduce an expression for the group velocityvg(v0) of a
pulse of light centered on frequencyv0 in terms of the~uni-
valent! plasma frequencyvp of the medium, given by

vp
25

4pNe2

m
, ~1!

whereN is the number density of atoms, ande andm are the
charge and mass of an electron. Give a condition on the
separationD compared to the linewidthg such that the group
velocity vg(v0) is negative.

In a recent experiment by Wanget al.,4 a group velocity of
vg52c/310, wherec is the speed of light in vacuum, wa
demonstrated in cesium vapor using a pair of spectral li
with separation D/2p'2 MHz and linewidth g/2p
'0.8 MHz.

B. Propagation of a monochromatic plane wave

Consider a wave with electric fieldE0eiv(z/c2t) that is
incident fromz,0 on a medium that extends fromz50 to a.
Ignore reflection at the boundaries, as is reasonable if
index of refractionn(v) is near unity. Particularly simple
results can be obtained when you make the~unphysical! as-
sumption that thevn(v) varies linearly with frequency
about a central frequencyv0 . Deduce a transformation tha
has a frequency-dependent part and a frequency-indepen
part between the phase of the wave forz,0 to that of the
wave inside the medium, and to that of the wave in
regiona,z.
607 Am. J. Phys.69 ~5!, May 2001 http://ojps.aip.org/aj
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C. Fourier analysis

Apply the transformations between an incident monoch
matic wave and the wave in and beyond the medium to
Fourier analysis of an incident pulse of formf (z/c2t).

D. Propagation of a sharp wave front

In the approximation thatvn varies linearly withv, de-
duce the waveforms in the regions 0,z,a anda,z for an
incident pulsed(z/c2t), whered is the Dirac delta function.
Show that the pulse emerges out of the gain region atz5a at
time t5a/vg , which appears to be earlier than when it ente
this region if the group velocity is negative. Show also th
inside the negative group velocity medium a pulse pro
gates backwards fromz5a at time t5a/vg,0 to z50 at t
50, at which time it appears to annihilate the incident pul

E. Propagation of a Gaussian pulse

As a more physical example, deduce the waveforms in
regions 0,z,a and a,z for a Gaussian incident puls

E0e2(z/c2t)2/2t2
eiv0(z/c2t). Carry the frequency expansion o

vn(v) to second order to obtain conditions of validity of th
analysis such as maximum pulse widtht, maximum lengtha
of the gain region, and maximum time of advance of t
emerging pulse. Consider the time required to genera
pulse of rise timet when assessing whether the time advan
in a negative group velocity medium can lead to superlu
nal signal propagation.

II. SOLUTION

The concept of group velocity appears to have been
enunciated by Hamilton in 1839 in lectures of which on
abstracts were published.5 The first recorded observation o
the group velocity of a~water! wave is due to Russell in
1844.6 However, widespread awareness of the group velo
dates from 1876 when Stokes used it as the topic o
Smith’s Prize examination paper.7 The early history of group
velocity has been reviewed by Havelock.8

H. Lamb9 credits A. Schuster with noting in 1904 that
negative group velocity, i.e., a group velocity of oppos
sign to that of the phase velocity, is possible due to anom
lous dispersion. Von Laue10 made a similar comment in
1905. Lamb gave two examples of strings subject to exte
potentials that exhibit negative group velocities. These ea
considerations assumed that in case of a wave with pos
group and phase velocities incident on the anomalous
dium, energy would be transported into the medium with
positive group velocity, and so there would be waves w
negative phase velocity inside the medium. Such nega
phase velocity waves are formally consistent with Sne
Negative group velocity
Kirk T. McDonalda)
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The
law11 ~sinceu t5sin21@(ni /nt)sinui# can be in either the firs
or second quadrant!, but they seemed physically implausib
and the topic was largely dropped.

Present interest in negative group velocity is based
anomalous dispersion in a gain medium, where the sign
the phase velocity is the same for incident and transmi
waves, and energy flows inside the gain medium in the
posite direction to the incident energy flow in vacuum.

The propagation of electromagnetic waves at frequen
near those of spectral lines of a medium was first extensiv
discussed by Sommerfeld and Brillouin,12 with emphasis on
the distinction between signal velocity and group veloc
when the latter exceedsc. The solution presented here
based on the work of Garrett and McCumber,13 as extended
by Chiaoet al.14,15 A discussion of negative group velocit
in electronic circuits has been given by Mitchell and Chiao16

A. Negative group velocity

In a medium of index of refractionn(v), the dispersion
relation can be written

k5
vn

c
, ~2!

where k is the wave number. The group velocity is the
given by

vg5ReFdv

dkG5
1

Re@dk/dv#

5
c

Re@d~vn!/dv#
5

c

n1v Re@dn/dv#
.

~3!

We see from Eq.~3! that if the index of refraction de
creases rapidly enough with frequency, the group velo
can be negative. It is well known that the index of refracti
decreases rapidly with frequency near an absorption l
where ‘‘anomalous’’ wave propagation effects can occu12

However, the absorption makes it difficult to study the
effects. The insight of Garrett and McCumber13 and of Chiao
et al.14,15,17–19is that demonstrations of negative group v
locity are possible in media with inverted populations,
that gain rather than absorption occurs at the frequencie
interest. This was dramatically realized in the experimen
Wanget al.4 by use of a closely spaced pair of gain lines,
perhaps first suggested by Steinberg and Chiao.17

We use a classical oscillator model for the index of refr
tion. The indexn is the square root of the dielectric consta
e, which is in turn related to the atomic polarizabilitya ac-
cording to

D5eE5E14pP5E~114pNa! ~4!

~in Gaussian units!, whereD is the electric displacement,E is
the electric field, andP is the polarization density. Then, th
index of refraction of a dilute gas is

n5Ae'112pNa. ~5!

The polarizabilitya is obtained from the electric dipol
momentp5ex5aE induced by electric fieldE. In the case
of a single spectral line of frequencyv j , we say that an
electron is bound to the~fixed! nucleus by a spring of con
stantK5mv j

2, and that the motion is subject to the dampi
608 Am. J. Phys., Vol. 69, No. 5, May 2001
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force 2mg j ẋ, where the dot indicates differentiation wit
respect to time. The equation of motion in the presence o
electromagnetic wave of frequencyv is

ẍ1g j ẋ1v j
2x5

eE

m
5

eE0

m
eivt. ~6!

Hence,

x5
eE

m

1

v j
22v22 ig jv

5
eE

m

v j
22v21 ig jv

~v j
22v2!21g j

2v2 , ~7!

and the polarizability is

a5
e2

m

v j
22v21 ig jv

~v j
22v2!21g j

2v2 . ~8!

In the present problem we have two spectral lines,v1,2

5v06D/2, both of oscillator strength21 to indicate that the
populations of both lines are inverted, with damping co
stantsg15g25g. In this case, the polarizability is given b

a52
e2

m

~v02D/2!22v21 igv

~~v02D/2!22v2!21g2v2

2
e2

m

~v01D/2!22v21 igv

~~v01D/2!22v2!21g2v2

'2
e2

m

v0
22Dv02v21 igv

~v0
22Dv02v2!21g2v2

2
e2

m

v0
212Dv02v21 igv

~v0
21Dv02v2!21g2v2 , ~9!

where the approximation is obtained by the neglect of ter
in D2 compared to those inDv0 .

For a probe beam at frequencyv, the index of refraction
~5! has the form

n~v!'12
vp

2

2 F v0
22Dv02v21 igv

~v0
22Dv02v2!21g2v2

1
v0

21Dv02v21 igv

~v0
21Dv02v2!21g2v2G , ~10!

wherevp is the plasma frequency given by Eq.~1!. This is
illustrated in Fig. 1.

The index at the central frequencyv0 is

Fig. 1. The real and imaginary parts of the index of refraction in a medi
with two spectral lines that have been pumped to inverted populations.
lines are separated by angular frequencyD and have widthsg50.4D.
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n~v0!'12 i
vp

2g

~D21g2!v0
'12 i

vp
2

D2

g

v0
, ~11!

where the second approximation holds wheng!D. The
electric field of a continuous probe wave then propaga
according to

E~z,t !5ei ~kz2v0t !5eiv~n~v0!z/c2t !

'ez/@D2c/gv~2/p!#eiv0~z/c2t !. ~12!

From this we see that at frequencyv0 the phase velocity isc,
and the medium has an amplitude gain lengthD2c/gvp

2.
To obtain the group velocity~3! at frequencyv0 , we need

the derivative

d~vn!

dv U
v0

'12
2vp

2~D22g2!

~D21g2!2 , ~13!

where we have neglected terms inD andg compared tov0 .
From Eq.~3!, we see that the group velocity can be negat
if

D2

vp
22

g2

vp
2 >

1

2 S D2

vp
2 1

g2

vp
2D 2

. ~14!

The boundary of the allowed region~14! in (D2,g2) space is
a parabola whose axis is along the lineg252D2, as shown
in Fig. 2. For the physical regiong2>0, the boundary is
given by

g2

vp
2 5A114

D2

vp
2212

D2

vp
2 . ~15!

Thus, to have a negative group velocity, we must have

D<&vp , ~16!

which limit is achieved wheng50; the maximum value ofg
is 0.5vp whenD50.866vp .

Near the boundary of the negative group velocity regi
uvgu exceedsc, which alerts us to concerns of superlumin
behavior. However, as will be seen in the following sectio
the effect of a negative group velocity is more dramatic wh
uvgu is small rather than large.

The region of recent experimental interest isg!D!vp ,
for which Eqs.~3! and ~13! predict that

Fig. 2. The allowed region~14! in (D2,g2) space such that the group ve
locity is negative.
609 Am. J. Phys., Vol. 69, No. 5, May 2001
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vg'2
c

2

D2

vp
2 . ~17!

A value of vg'2c/310 as in the experiment of Wang co
responds toD/vp'1/12. In this case, the gain lengt
D2c/gvp

2 was approximately 40 cm.
For later use we record the second derivative,

d2~vn!

dv2 U
v0

'8i
vp

2g~3D22g2!

~D21g2!3 '24i
vp

2

D2

g

D2 , ~18!

where the second approximation holds ifg!D.

B. Propagation of a monochromatic plane wave

To illustrate the optical properties of a medium with neg
tive group velocity, we consider the propagation of an el
tromagnetic wave through it. The medium extends fromz
50 to a, and is surrounded by vacuum. Because the inde
refraction~10! is near unity in the frequency range of inte
est, we ignore reflections at the boundaries of the mediu

A monochromatic plane wave of frequencyv and incident
from z,0 propagates with phase velocityc in vacuum. Its
electric field can be written

Ev~z,t !5E0eivz/ce2 ivt ~z,0!. ~19!

Inside the medium this wave propagates with phase velo
c/n(v) according to

Ev~z,t !5E0eivnz/ce2 ivt ~0,z,a!, ~20!

where the amplitude is unchanged since we neglect the s
reflection at the boundaryz50. When the wave emerges int
vacuum atz5a, the phase velocity is againc, but it has
accumulated a phase lag of (v/c)(n21)a, and so appears a

Ev~z,t !5E0eiva~n21!/ceivz/ce2 ivt

5E0eivan/ce2 iv~ t2~z2a!/c! ~a,z!. ~21!

It is noteworthy that a monochromatic wave forz.a has the
same form as that inside the medium if we make
frequency-independent substitutions

z→a, t→t2
z2a

c
. ~22!

Since an arbitrary waveform can be expressed in term
monochromatic plane waves via Fourier analysis, we can
these substitutions to convert any wave in the region 0,z
,a to its continuation in the regiona,z.

A general relation can be deduced in the case where
second and higher derivatives ofvn(v) are very small. We
can then write

vn~v!'v0n~v0!1
c

vg
~v2v0!, ~23!

wherevg is the group velocity for a pulse with central fre
quencyv0 . Using this in Eq.~20!, we have

Ev~z,t !'E0eiv0z~n~v0!/c21/vg!eivz/vge2 ivt ~0,z,a!.
~24!

In this approximation, the Fourier componentEv(z) at fre-
quencyv of a wave inside the gain medium is related to th
of the incident wave by replacing the frequency depende
609New Problems
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Fig. 3. A snapshot of three Fourier components of a pulse in the vicinity of a negative group velocity medium. The component at the central wavel0

is unaltered by the medium, but the wavelength of a longer wavelength component is shortened, and that of a shorter wavelength component is.
Then, even when the incident pulse has not yet reached the medium, there can be a point inside the medium at which all components have the
and a peak appears. Simultaneously, there can be a point in the vacuum region beyond the medium at which the Fourier components are again
and a third peak appears. The peaks in the vacuum regions move with group velocityvg5c, but the peak inside the medium moves with a negative gro
velocity, shown asvg52c/2. The phase velocityvp is c in vacuum, and close toc in the medium.
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eivz/c by eivz/vg, i.e., by replacingz/c by z/vg , and multi-
plying by the frequency-independent phase fac
eiv0z(n(v0)/c21/vg). Then, using transformation~22!, the wave
that emerges into vacuum beyond the medium is

Ev~z,t !'E0eiv0a~n~v0!/c21/vg!

3eiv~z/c2a~1/c21/vg!!e2 ivt ~a,z!. ~25!

The wave beyond the medium is related to the incident w
by multiplying by a frequency-independent phase, and
replacing z/c by z/c2a(1/c21/vg) in the frequency-
dependent part of the phase.

The effect of the medium on the wave as described
Eqs.~24! and ~25! has been called ‘‘rephasing.’’4

C. Fourier analysis and ‘‘rephasing’’

The transformations between the monochromatic incid
wave ~19! and its continuation in and beyond the mediu
~24! and ~25!, imply that an incident wave

E~z,t !5 f ~z/c2t !5E
2`

`

Ev~z!e2 ivt dv ~z,0!, ~26!

whose Fourier components are given by

Ev~z!5
1

2p E
2`

`

E~z,t !eivt dt, ~27!

propagates as

E~z,t !'5
f ~z/c2t ! ~z,0!

eiv0z~n~v0!/c21/vg! f ~z/vg2t ! ~0,z,a!

eiv0a~n~v0!/c21/vg! f ~z/c2t2a~1/c21/vg!!

~a,z!.

~28!

An interpretation of Eq.~28! in terms of ‘‘rephasing’’ is as
follows. Fourier analysis tells us that the maximum amp
tude of a pulse made of waves of many frequencies, eac
the form Ev(z,t)5E0(v)eif(v)5E0(v)ei (k(v)z2vt1f0(v))

with E0>0, is determined by adding the amplitudesE0(v).
This maximum is achieved only if there exist points~z,t!
such that all phasesf~v! have the same value.

For example, we consider a pulse in the regionz,0
whose maximum occurs when the phases of all compon
frequencies vanish, as shown at the left of Fig. 3. Referr
610 Am. J. Phys., Vol. 69, No. 5, May 2001
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to Eq. ~19!, we see that the peak occurs whenz5ct. As
usual, we say that the group velocity of this wave isc in
vacuum.

Inside the medium, Eq.~24! describes the phases of th
components, which all have a common frequenc
independent phasev0z(n(v0)/c21/vg) at a givenz, as well
as a frequency-dependent partv(z/vg2t). The peak of the
pulse occurs when all the frequency-dependent phases
ish; the overall frequency-independent phase does not a
the pulse size. Thus, the peak of the pulse propagates w
the medium according toz5vgt. The velocity of the peak is
vg , the group velocity of the medium, which can be neg
tive.

The ‘‘rephasing’’ ~24! within the medium changes th
wavelengths of the component waves. Typically the wa
length increases, and by greater amounts at longer w
lengths. A longer time is required before the phases of
waves all become the same at some pointz inside the me-
dium, so in a normal medium the velocity of the peak a
pears to be slowed down. But in a negative group veloc
medium, wavelengths short compared tol0 are lengthened,
long waves are shortened, and the velocity of the peak
pears to be reversed.

By a similar argument, Eq.~25! tells us that in the vacuum
region beyond the medium the peak of the pulse propag
according toz5ct1a(1/c21/vg). The group velocity is
againc, but the ‘‘rephasing’’ within the medium results in
shift of the position of the peak by the amounta(1/c
21/vg). In a normal medium where 0,vg<c the shift is
negative; the pulse appears to have been delayed durin
passage through the medium. But after a negative group
locity medium, the pulse appears to have advanced!

This advance is possible because, in the Fourier vi
each component wave extends over all space, even if
pulse appears to be restricted. The unusual ‘‘rephasing’’
negative group velocity medium shifts the phases of the
quency components of the wave train in the region ahea
the nominal peak such that the phases all coincide, an
peak is observed, at times earlier than expected at po
beyond the medium.

As shown in Fig. 3 and further illustrated in the exampl
in the following, the ‘‘rephasing’’ can result in the simulta
neous appearance of peaks in all three regions.
610New Problems
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D. Propagation of a sharp wave front

To assess the effect of a medium with negative group
locity on the propagation of a signal, we first consider
waveform with a sharp front, as recommended by Somm
feld and Brillouin.12

As an extreme but convenient example, we take the in
dent pulse to be a Dirac delta function,E(z,t)5E0d(z/c
2t). Inserting this in Eq.~28!, which is based on the linea
approximation~23!, we find

E~z,t !'5
E0d~z/c2t ! ~z,0!

E0eiv0z~n~v0!/c21/vg!d~z/vg2t ! ~0,z,a!

E0eiv0a~n~v0!/c21/vg!d~z/c2t2a~1/c21/vg!!

~a,z!.
~29!

According to Eq.~29!, the delta-function pulse emerge
from the medium atz5a at time t5a/vg . If the group ve-
locity is negative, the pulse emerges from the medium be
it enters att50!

A sample history of~Gaussian! pulse propagation is illus
trated in Fig. 4. Inside the negative group velocity mediu
an ~anti!pulse propagates backwards in space fromz5a at
time t5a/vg,0 to z50 at timet50, at which point it ap-
pears to annihilate the incident pulse.

This behavior is analogous to barrier penetration by a r
tivistic electron20 in which an electron can emerge from th
far side of the barrier earlier than it hits the near side, if
electron emission at the far side is accompanied by posi
emission, and the positron propagates within the barrier s
to annihilate the incident electron at the near side. In
Wheeler–Feynman view, this process involves only a sin
electron which propagates backwards in time when ins
the barrier. In this spirit, we might say that pulses propag
backwards in time~but forward in space! inside a negative
group velocity medium.

The Fourier components of the delta function are indep
dent of frequency, so the advanced appearance of the s
wave front as described by Eq.~29! can occur only for a gain
medium such that the index of refraction varies linearly at
frequencies. If such a medium existed with negative slo
dn/dv, then Eq.~29! would constitute superluminal signa
propagation.

However, from Fig. 1 we see that a linear approximat
to the index of refraction is reasonable in the negative gr
velocity medium only foruv2v0u&D/2. The sharpest wave
front that can be supported within this bandwidth has ch
acteristic rise timet'1/D.

For the experiment of Wanget al. whereD/2p'106 Hz,
an analysis based on Eq.~23! would be valid only for pulses
with t*0.1ms. Wang et al. used a pulse witht'1 ms,
close to the minimum value for which Eq.~23! is a reason-
able approximation.

Since a negative group velocity can only be experien
over a limited bandwidth, very sharp wave fronts must
excluded from the discussion of signal propagation. Ho
ever, it is well known12 that great care must be taken wh
discussing the signal velocity if the waveform is not shar
611 Am. J. Phys., Vol. 69, No. 5, May 2001
-

r-

i-

re

,

-

e
n

as
e
le
e

te

-
arp

ll
e

p

r-

d
e
-

E. Propagation of a Gaussian pulse

We now consider a Gaussian pulse of temporal lengtt
centered on frequencyv0 ~the carrier frequency!, for which
the incident waveform is

Fig. 4. Ten ‘‘snapshots’’ of a Gaussian pulse as it traverses a negative g
velocity region (0,z,50), according to Eq.~31!. The group velocity in the
gain medium isvg52c/2, andc has been set to 1.
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E~z,t !5E0e2~z/c2t !2/2t2
eiv0z/ce2 iv0t ~z,0!. ~30!

Inserting this in Eq.~28! we find

E~z,t !55
E0e2~z/c2t !2/2t2

eiv0~z/c2t ! ~z,0!

E0e2~z/vg2t !2/2t2
eiv0~n~v0!z/c2t ! ~0,z,a!

E0eiv0a~n~v0!21!/ce2~z/c2a~1/c21/vg!2t !2/2t2

3eiv0~z/c2t ! ~a,z!.
~31!

The factoreiv0a(n(v0)21)/c in Eq. ~31! for a,z becomes

evp
2ga/D2c using Eq.~11!, and represents a small gain due

traversing the negative group velocity medium. In the exp
ment of Wanget al., this factor was only 1.16.

We have already noted in the previous section that
linear approximation tovn(v) is only good over a fre-
quency interval aboutv0 of orderD, and so Eq.~31! for the
pulse after the gain medium applies only for pulse width

t*
1

D
. ~32!

Further constraints on the validity of Eq.~31! can be ob-
tained using the expansion ofvn(v) to second order. Fo
this, we repeat the derivation of Eq.~31! in slightly more
detail. The incident Gaussian pulse~30! has the Fourier de
composition~27!,

Ev~z!5
t

A2p
E0e2t2~v2v0!2/2eivz/c ~z,0!. ~33!

We again extrapolate the Fourier component at frequencv
into the regionz.0 using Eq.~20!, which yields

Ev~z!5
t

A2p
E0e2t2~v2v0!2/2eivnz/c ~0,z,a!. ~34!

We now approximate the factorvn(v) by its Taylor ex-
pansion through second order:

vn~v!'v0n~v0!1
c

vg
~v2v0!

1
1

2

d2~vn!

dv2 U
v0

~v2v0!2. ~35!

With this, we find from Eqs.~26! and ~34! that

E~z,t !5
E0

A
e2~z/vg2t !2/2A2t2

eiv0n~v0!z/ce2 iv0t

~0,z,a!. ~36!

where

A2~z!512 i
z

ct2

d2~vn!

dv2 U
v0

. ~37!

The waveform forz.a is obtained from that for 0,z,a by
the substitutions~22! with the result

E~z,t !5
E0

A
eiv0a~n~v0!21!/ce2~z/c2a~1/c21/vg!2t !2/2A2t2

3eiv0z/ce2 iv0t ~a,z!, ~38!
612 Am. J. Phys., Vol. 69, No. 5, May 2001
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whereA is evaluated atz5a here. As expected, the form
~36! and ~38! revert to those of Eq. ~31! when
d2(vn(v0))/dv250.

So long as the factorA(a) is not greatly different from
unity, the pulse emerges from the medium essentially un
torted, which requires

a

ct
!

1

24

D2

vp
2

D

g
Dt, ~39!

using Eqs.~18! and ~37!. In the experiment of Wanget al.,
this condition is thata/ct!1/120, which was well satisfied
with a56 cm andct5300 m.

As in the case of the delta function, the centroid of
Gaussian pulse emerges from a negative group velocity
dium at time

t5
a

vg
,0, ~40!

which is earlier than the timet50 when the centroid enter
the medium. In the experiment of Wanget al., the time ad-
vance of the pulse wasa/uvgu'300a/c'631028 s
'0.06t.

If one attempts to observe the negative group veloc
pulse inside the medium, the incident wave would be p
turbed and the backwards-moving pulse would not be
tected. Rather, one must deduce the effect of the nega
group velocity medium by observation of the pulse th
emerges into the regionz.a beyond that medium, where th
significance of the time advance~40! is the main issue.

The time advance caused by a negative group velo
medium is larger whenuvgu is smaller. It is possible tha
uvgu.c, but this gives a smaller time advance than when
negative group velocity is such thatuvgu,c. Hence, there is
no special concern as to the meaning of negative group
locity when uvgu.c.

The maximum possible time advancetmax by this tech-
nique can be estimated from Eqs.~17!, ~39!, and~40! as

tmax

t
'

1

12

D

g
Dt'1. ~41!

The pulse can advance by at most a few rise times du
passage through the negative group velocity medium.

While this aspect of the pulse propagation appears to
superluminal, it does not imply superluminal signal propag
tion.

In accounting for signal propagation time, the time need
to generate the signal must be included as well. A pulse w
a finite frequency bandwidthD takes at least timet'1/D to
be generated, and so is delayed by a time of order of its
time t compared to the case of an idealized sharp wave fr
Thus, the advance of a pulse front in a negative group ve
ity medium by&t can at most compensate for the origin
delay in generating that pulse. The signal velocity, as defi
by the path length between the source and detector div
by the overall time from onset of signal generation to sig
detection, remains bounded byc.

As has been emphasized by Garrett and McCumber13 and
by Chiao,18,19 the time advance of a pulse emerging from
gain medium is possible because the forward tail of a smo
pulse gives advance warning of the later arrival of the pe
The leading edge of the pulse can be amplified by the g
medium, which gives the appearance of superluminal pu
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velocities. However, the medium is merely using informati
stored in the early part of the pulse during its~lengthy! time
of generation to bring the apparent velocity of the pu
closer toc.

The effect of the negative group velocity medium can
dramatized in a calculation based on Eq.~31! in which the

Fig. 5. The same as Fig. 4, but with the electric field plotted on a logar
mic scale from 1 to 10265.
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pulse width is narrower than the gain region@in violation of
condition ~39!#, as shown in Fig. 4. Here, the gain region
0,z,50, the group velocity is taken to be2c/2, andc is
defined to be unity. The behavior illustrated in Fig. 4 is p
haps less surprising when the pulse amplitude is plotted o
logarithmic scale, as in Fig. 5. Although the overall gain
the system is near unity, the leading edge of the pulse
amplified by about 70 orders of magnitude in this exam
@the implausibility of which underscores that condition~39!
cannot be evaded#, while the trailing edge of the pulse i
attenuated by the same amount. The gain medium has
porarily loaned some of its energy to the pulse permitting
leading edge of the pulse to appear to advance faster tha
speed of light.

Our discussion of the pulse has been based on a clas
analysis of interference, but, as remarked by Dirac,21 classi-
cal optical interference describes the behavior of the w
functions of individual photons, not of interference betwe
photons. Therefore, we expect that the behavior discus
above will soon be demonstrated for a ‘‘pulse’’ consisting
a single photon with a Gaussian wave packet.
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I. PROBLEM

Ferrofluids1 are stable suspensions of magnetic partic
having linear dimension on the order of 10 nm. Due to v
orous Brownian motion the magnetic particles assume
dom orientations rendering the suspension as a whole p
magnetic. These complex fluids show a variety of ph
nomena and instabilities that amuse and delight students
teachers alike.2 Because these fluids are used in a variety
applications including rotary seals, sensors, and actuat3

they are commercially available.4

Figure 1 shows the experimental apparatus for view
and recording the response of a ferrofluid film trapped at
air–water interface. Figure 2 shows recorded images fo
drop ~;40 ml! of mineral-oil-based ferrofluid5 introduced to
the surface of clean, filtered, de-ionized~18 MV! water. The
hydrophobic ferrofluid spreads uniformly over the surface
water contained in a Petri dish. We gently stir the surface
emulsify the film, creating a collection of dark flat circula
drops of ferrofluid as recorded in Fig. 2~a!. Figure 2~b!
shows the film 1 min after a cylindrical magnet having
radius of 1 cm is introduced with the axis of symmetry ve
tical and the lower end 3.3 cm above the ferrofluid film. T
ferrofluid film clears from directly beneath the magnet b
moves radially inward at large distances, forming te
shaped drops with the clearer regions streaming outw
The ferrofluid collects in a ring structure at a finite radi
~which is most dense at radius;1.0 cm! from the center of
the magnetic field symmetry axis. As the ferrofluid builds u
clumps or cone-shaped structures develop. As the co
grow, they become unstable and migrate one at a time
the central region. Figure 2~c! taken at 314 min shows the
clumping in the ring-shaped structure with one cone at t
o’clock escaping to the central region. Finally in Fig. 2~d!,
taken 21 min after introducing the magnet, a regular ‘‘cry
talline’’ array of well-separated ferrofluid cones has forme
Yet there remains a ferrofluid film ring surrounding this cry
talline structure.

How is it possible that the ferrofluid is both attracted
~cones! and repelled from~film! the region directly below the
cylindrical magnet?
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II. SOLUTION

Magnetic body forces, surface tension, viscous drag,
gravity combine to produce the peculiar behavior obser
here. We focus on the magnetic body forces as the prim
explanation for the question posed above. Figure 3 show
side view of one of the ‘‘cones’’ of ferrofluid which form the
two-dimensional crystalline array beneath the magnet. Th
clumps have a nearly ellipsoidal shape above the water
face with the symmetry axis parallel to the applied fie
Other studies show that ferrofluid droplets submerged in
immiscible fluid deform into ellipsoids and align parallel
the direction of a uniform external magnetic field.6 Solutions
have long existed for the magnetic~electric! field of an el-
lipsoid of permeabilitym ~dielectric constante! subjected to
a uniform external field in a surrounding medium of perm
ability m0 ~dielectric constante0!.7 When the symmetry axis
of the ellipse is aligned parallel to the external field directio
the field inside the ellipse is uniform and parallel to the a
plied field ~at large distances!. Thus, to first order the ‘‘ellip-
soidal cones’’ behave like little magnets oriented parallel
the external field and so move along the water surface to
strongest field regions located directly beneath the cylin
cal magnet. However, the magnetic field induced in each
these cones is aligned parallel with the neighboring co
fields; therefore, the cones repel one another in the plan
the interface just like parallel oriented permanent magnets
crystal lattice results.8 These results are qualitative, but in
tuitive, given our experience playing with permanent ma
nets.

How do we understand the quite different behavior of t
film? Rosensweig1 gives a general derivation of the bod
force f or force per unit volume, which reduces for ferroflu
suspensions to

f5m0~M "¹!H5m0M“H, ~1!

wherem0 is the vacuum permeability,H is the magnetic field
strength, andM is the magnetization in the film volume e
ement. This functional form suggests the Kelvin force de
sity on an isolated body, except that the local fieldH re-
places the applied fieldH0 . Intuitively, we understand this
body force to be like the force acting on a magnetic dipo
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