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Surface charges on circuit wires and resistors play three roles
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The significance of the surface electric charge densities associated with current-carrying circuits is
often not appreciated. In general, the conductors of a current-carrying circuit must have nonuniform
surface charge densities on them (1) to maintain the potential around the circuit, (2) to provide the
electric field in the space outside the conductors, and (3) to assure the confined flow of current. The
surface charges and associated electric field can vary greatly, depending on the location and
orientation of other parts of the circuit. We illustrate these ideas with a circuit consisting of a resistor
and a battery connected by wires and other conductors, in a geometry that permits solution with a
Fourier—Bessel series, while giving flexibility in choice of wire and resistor sizes and location of the
battery. Plots of the Poynting vector graphically demonstrate energy flow from the battery to the
resistive elements. For a resistor with a large resistance, the potentials and surface charge densities
around the current-carrying circuit are nearly the same as for the open circuit with the resistor
removed. For such resistors, the capacitance of a resistor and its adjacent elements, defined in terms
of the surface and interface charges present while current flows, is roughly the same as the
capacitance of the adjacent elements of the open circuit alone. The discussion is in terms of
time-independent currents and voltages, but applies also to low-frequency ac circuits. © 1996

American Association of Physics Teachers.

I. INTRODUCTION

The ideas of electric charges and potentials of conducting
surfaces in electrostatics on the one hand and current flow in
simple circuits on the other are disjoint topics in almost all
elementary physics textbooks. Such texts usually begin elec-
tricity and magnetism with electrostatics—first, point
charges, then conducting surfaces at different potentials, sur-
face charge densities, etc. To segue into magnetism (and to
treat a practical topic), the texts then discuss current flow in
simple circuits—wires, resistors, batteries. Cutrents are de-
scribed as charges in motion within the interior of the ele-
ments of the circuit, but the charges are rapidly subsumed
into current densities or total currents obeying Ohm’s law. In
electrostatics, charges are always stationary; in circuits,
charges are always in motion.
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A cursory inspection of some beginning undergraduate
texts'™'® in the Berkeley Physics Library showed that only
one (the new book by Chabay and Sherwood') mentioned
surface charges on the wires or resistors. In some, a figure
showing a battery in the circuit has plus and minus signs next
to the battery plates, but it is not clear whether this is a hint
at charges present or only an indication of the sign of the
potential at the terminals of the battery. If a text discusses the
charging of a capacitor, charges do surface again on the
plates of the capacitor, but there is no mention of stationary
charge elsewhere on the circuit. With the early notable ex-
ception of Jefimenko’s book,!! intermediate,'>'* or ad-
vanced texts’>~18 are no better. My book does not even treat
circuits, except in a few problems associated with capaci-
tance or inductance. It is very true that the amounts of charge
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on the wites in a circuit are generally small—the capacitance
per unit length of an ordinary lamp cord is measured in pi-
cofarads per meter—but they are significant, nonetheless.

Over the years the pages of this journal and a few books
have contained discussions of one or another aspect of the
electric fields or stationary surface charges associated with
current-carrying conductors or simple circuits.!*~0 Already
mentioned are the books by Jefimenko!! and Chabay and
Sherwood.! The correct analytic solution for the special case
of a uniform straight cylindrical wire with a cylindrically
symmetric return path and remote battery appeared 63 years
ago in a book by Schaefer,' and was published indepen-
dently 50 or more years ago by Marcus?®® and by
Sommerfeld.?! Notable at the qualitative level are the class-
room demonstrations of the electric fields and charges ac-
companying circuits by Jefimenko,?* Parker,® and Moreau
et al”® Some of the discussion focuses on what makes a
current flow, especially what makes it turn a corner when a
wire is bent.”~* That there are localized accumulations of
surface charge to assure that the current does not escape from
the wire is made clear—‘*... when the current is steady it is
‘guided’ along the conducting Wire,”;23 ¢¢... this linear varia-
tion of the charge distribution [for a system of long straight
wires] does indeed produce uniform axial electric fields
within the conductor surfaces.””**

Unfortunately, the discussions are too qualitative or in-
complete or so specialized as to omit what I believe are
equally important aspects of the surface charges, those of
maintaining the potential around a circuit and providing the
electric field throughout space. It is a truism that the electro-
magnetics of a circuit is ultimately determined by the dispo-
sition of all the charges—in the wires as current, on the
surfaces as stationary charge densities, and within the battery
or other source of emf.>! Nevertheless, statements such as
(describing a simple circuit of switch, wires, resistor, and
battery), ‘‘Surface charges are set up immediately after the
switch is closed and the resulting electric fields drive current
in the circuit,”” mislead in that the surface charge densities
can be vastly different on a given part of the circuit, for the
same current flow, depending on the location of the rest of
the components. Furthermore, for a circuit in which the re-
sistor has a very different resistance from the low-resistance
wires connecting it, there is localization of charge at each
end of the resistor that is similar to the charge present if
current flow is stopped by removal of the resistor. This fact
demonstrates that the surface charge densities play multiple
roles in keeping the current confined and maintaining the
potential and fields in and around the circuit.

What do we offer beyond the previous literature? The
treatments of the long straight wire,'*~*! or localized con-
figurations of such wires®* illustrate nicely the presence of
surface charge densities on current-carrying circuit elements,
but do not eliminate all the apparent confusion. Our contri-
bution is a generalization of the long wire of uniform con-
ductivity connected to a remote battery. The discussion clos-
est to ours is that of Heald,”” who treats a heterogeneous
circuit in two dimensions—an infinitely long circular cylin-
der of negligible wall thickness, whose wall has zero resis-
tivity, except over an angular range 6=*a (region of the
resistor), and a battery across =%

We consider the circuit shown in Fig. 1. The azimuthally
symmetric geometry is retained, as is the straight central
conductor of uniform circular cross section of radius a,*
now of finite length. The conductor is not uniform, however,
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Fig. 1. Sketch of the circuit of wires, resistor, and battery. A central circular
column of radius @ and length L consists of two wires, one of length b and
the other of length (L—b—d), with a cylindrical resistor of radius a and
length d between (shaded region). The wires have resistivity py, the resistor,
p1 . The column is terminated by two flat concentric circular plates of radius
R and zero resistivity. The circuit is completed by a hollow cylindrical
battery cage such that the potential on the bottom plate and for a distance
z=b' up the cage is V. The potential falls linearly to zero at z=»'+d’, and
is zero beyond and on the top plate. The region, z=b'to z=b'+d’ is the
battery. When the resistor is in place, current flows up the central column.
The voltage drop along the column is determined by the ratio of resistivities
(and b and d). When the resistor is absent, the bottom plate and wire are at
potential V, while the top plate and wire are at zero potential.

but consists of wires (resistivity py) on either side of a resis-
tor (resistivity p;). The total length of the central column is
L; the resistor is of length d; the bottom wire is of length b;
the top wire is of length (L —b—d). The circuit is completed
by circular plates of radius R at z=0 and z=L, and a cylin-
drical battery cage at p=R, 0<<z<<L. The plates are assumed
to have zero resistivity and so are equipotentials. The return
part of the circuit at p=R is such that the electrostatic poten-
tial there is ®(R,z)=V for 0=<z<b', &(R,2)
=V[1—(z—b")/d'] for b'<z<b'+d' and P(R,z)=0 for
b'+d’'<z<L. In the limit of d'—0, the potential at p=R is
that of a localized ring battery at z=5b". In the limit b’ —0,
d' —L, there is a uniform potential drop from z=0to z=L,
akin to the outer cage of a cylindrical time projection cham-
ber, a particle physics detector.® The cylindrical geometry
and azimuthal symmetry permits solution of the boundary
value problem for the potential in terms of modified Bessel
functions of order zero in p and trigonometric functions in z,
with arbitrary choices of all parameters. The details of the
solution are given in Appendix A.

Another generalization is our consideration of the com-
parison electrostatic problem that occurs when the resistor is
removed. A relaxation technique is used to obtain numerical
solutions. For simplicity of computation, we restrict our
comparisons to examples of centrally located (in z) resistors
and either a centrally located battery (d'~0, b’ =L/2) or a
uniform potential drop (b'=0, d' =L). The relaxation grid
spans one half of the circuit shown in Fig. 1, namely, 0=<z/
L=0.5 (0<i<M) and 0<sp<R (0<j=N), with M=40,
N=60. For the ‘“‘open circuit’’> examples given, the charge
densities for z>L/2 are the negatives of those at z'=L—z
and the potentials possess an obvious symmetry, modulo a
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Fig. 2. Equipotential contours for a resistor of length d/L=0.2, located
between b/L=0.1 and (b+d)/L=0.3, and a ring battery (d'=0) at
b'/L=0.05 (top) and b’/L=0.95 (bottom). The contours (left to right) are
®/V=0.95 (0.05) 0.05. The other circuit parameters are column radius a/L
=0.05, outer cylinder radius R/L =0.5, resistivity ratio »=>50. Dotted lines
mark the ends of the resistor.

constant. Details of the two-dimensional relaxation method
for cylindrical coordinates (p,z), including the method of
handling the region containing the z axis (p=0), are given in
Appendix B.

While our discussion is phrased in terms of steady-state
currents and voltages, the considerations are applicable to
low-frequency alternating currents. The range of applicabil-
ity is for frequencies w such that wr <1 and w7,<€1, where
7, are the inductive and capacitive relaxation times,
n=Y%]# and 7,=HC. [We are forced into somewhat un-
conventional symbols for inductance and resistance by our
previous use of L and R as lengths!] At frequencies satisfy-
ing these conditions the fields and charges oscillate in step
with the voltage, without phase lag or lead. The steady-state
language may be interpreted as instantaneous in time, every-
where around the circuit.

The range of validity of the quasistatic approximation can
be explored as follows. First of all, electrostatics is predi-
cated on VXE=0, but in fact VXE=—4B/or. In the quasi-
static limit, a current /(¢) in the central column produces an
azimuthal magnetic induction, B 4(t)= ul ()p/2ma® for
0<p<a, and By(t)=puol(t)2mp for p>a. The time-
varying flux produces an additional axial electric field at
p=a of magnitude |AE,|= uowl/4, as can be seen from
the integral form of Faraday’s law with an appropriate path
in the p—z plane. The electrostatic axial electric field varies
along the central column, but its order of magnitude is
|E,|=0O(V/L). Putting V=17 and requiring that the elec-
trostatic electric field be very large compared to |AE,|, we
find the criterion of approximate validity of the electrostatic
description of the electric fields to be
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po oL
Jez>9B,, where %C—I; wL =377 TN ohms.

Here \ is the free-space wavelength associated with the fre-
quency w. The inductance of the circuit of Fig. 1 is approxi-
mately, Z~(uy/4mL In(R?/a*), neglecting the contribution
from the interior of the central column. The putative crite-
rion, wr;<<€1, can be tested:

wZ

s 5 s
0T = < ~In(R*/a*).

7
Since the final expression is of order unity, the condition on
the resistance .78 assures that o <1.

We show below that the capacitance of the circuit of Fig.
1 is of the order C=0(4meya ), With a.g=a+R*/4L, the
first contribution from the surface charges on the column and
the second from the charge on the annular plates. The crite-

rion w7,<<1 implies that 4meywa 72<€1. But the ‘‘electro-
statics’’ criterion requires
el
0wn,=04meygwa g RB)>4dmegwa g5 F. =4 T

The joint conditions

dud
47 ;2 <wnp<l,

can surely be satisfied for long enough wavelengths. With
a=1 cm and L =R=10 cm, the lower end of the inequality
is (v/1p)* with yy~0.8 GHz, while .%2.~51 v/y, ohms.

To complete the discussion, consider the requirement of
legitimate neglect of Maxwell’s displacement current. The
current density is of the order |J|=O(I/mwa?) while the dis-

lacement curtent is of the order of
dD/ot|=0(we V/IL)=0(weyd #JL). The static approxima-
tion for the magnetic field is thus valid provided

AL
J<€377 m ohms.

We note in passing that when the resistance equals its upper
bound, wr,=0(4La.g/a’), a number somewhat larger than
unity. Like wm,, the resistance is bracketed between two
bounds,

L AL
377 N < #<377 57?(1_2 ohms.
It is easy to see that the bracketing criteria for w, and .78 fail
at roughly the same frequency, to wit, when the wavelength
is no longer very large compared with the dimensions of the
circuit.

For the reader with little interest in the details, we sum-
marize the rather obvious conclusions. For simplicity, con-
sider a circuit consisting of a resistor connected by wires to a
battery (or low-frequency ac source). Assume that the resis-
tance of the resistor is large compared to the internal resis-
tance of the battery and that of the wires. The circuit is
opened and closed by removing and inserting the resistor
(think of screwing in a light bulb), with the wires and battery
otherwise undisturbed. When the circuit is open, charge is
distributed along the surfaces of the wires in such a manner
that the potential on each wire is constant and the same as at
the corresponding terminal of the battery. At the end of each
wire, where the resistor would be, there is a larger accumu-
lation of charge, opposite in sign, one from the other, to
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Fig. 3. Surface charge densities (radial electrical field at surface in units of V/L) and voltage drop (in units of V) along the wires and resistor for the off-set
resistor and two locations of the battery of Fig. 2. When the voltage drop along the column is crudely the same as along the outer cylinder (Fig. 2, top), the
surface charge density (top) is confined to the immediate neighborhood of the resistor. When the voltage distribution along the outer cylinder (Fig. 2, bottom)
is very different from that along the column, the charge distribution along the wire (bottom) is large and negative for z/L>0.3 in order to produce the high

radial electric field at the wire and maintain its potential near zero.

provide the electric field across the gap. When the circuit is
closed by inserting the resistor, current flows and there are
changes in the surface charges and the potential of various
parts of the circuit, with the potential at any point around the
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circuit determined by current conservation and Ohm’s law
inside the wires and resistor, regardless of the circuit’s geo-
metrical configuration. But because the resistance of the rest
of the circuit is small compared to that of the resistor, almost
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all the potential drop occurs across the resistor, formerly the
gap. The charge distribution and the electric field configura-
tion at the resistor are changed in detail (there is now surface
charge on the resistor itself, and at the internal interfaces
between the wires and the ends of the resistor), but not as
much as one might think. Away from the resistor terminals,
the surface charges are much the same as in the absence of
the resistor because the voltages around the circuit are
largely the same. Depending on the configuration of the vari-
ous parts of the circuit, the surface charge density on the wire
near (but not at) the resistor may be of the same sign or
opposite to that in the immediate neighborhood of the end of
the resistor. Except in the most extreme situations, the sur-
face charge distribution along the resistor itself is the intui-
tive one—positive at the end where the current enters and
negative where it exits. What follows are explicit demonstra-
tions of these remarks with the circuit of Fig. 1.

II. EXAMPLES OF SURFACE CHARGE DENSITIES
ON THE WIRES AND RESISTOR AND
ENERGY FLOW

The general features described in the introduction are now
illustrated in the next several figures. Unless stated other-
wise, the ratio of resistivities is p;/py=50. Figure 2 presents
the equipotentials for circuits with two different locations of
the localized battery, while Fig. 3 shows the corresponding
surface charge densities. Before noting the differences occa-
sioned by the different positions of the battery, we comment
on the grossest feature of the surface charge distributions.
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The charge is concentrated close to the ends of the resistor,
with positive charge at the end where the current enters and
negative charge where it leaves. Intuition would demand this
behavior—there must be a strong electric field across the
resistor to maintain the current flow in a medium of high
resistivity. Care must be exercised with intuition, however,
since the continuity of current flow and Ohm’s law dictates
that there is a discontinuity in the internal longitudinal elec-
tric field at the interface between wire and resistor. Thus
there are internal surface charge densities at each end of the
resistor. The charges on the free surface of the resistor do not
necessarily relate to the current flow. In some situations, il-
lustrated below, the sign 6f surface charge (and normal elec-
tric field) along the side of the wire seems to oppose the
current flow, and in any event are unrelated to the small
internal longitudinal electric field that drives the current in
the highly conducting wire.

A. Influence of battery location

One influence of other parts of the circuit on the surface
charge density is illustrated by comparison of the upper and
lower surface charge densities in Fig. 3, corresponding to the
two locations of the battery shown in Fig. 2. The resistor, of
length d/L =0.2, is located near the bottom plate (b/L =0.1).
When the battery is near z=0 (Fig. 2, top), the potential drop
is concentrated in the region of small z at all radial distances.
Above the top of the resistor (z/L>0.3), the potential within
the column is less than 8% of its peak value, in rough cor-
respondence with the other parts of the circuit. The surface
charge density (Fig. 3, top) is localized to the resistor and the
nearby portions of the wires and is nearly symmetric about
the midpoint of the resistor. In contrast, when the battery is
placed near the top of the cage (Fig. 2, bottom), the potential
changes from being at its peak value for almost all z values
at the cage (p=R=0.5L) to being near zero on the top wire
(p=<a, 0.3<z/L<1). Only a short distance away, the poten-
tial has appreciable positive values; the closeness of the con-
tours implies a large radial electric field at the wire. In con-
sequence, the surface charge density becomes skewed (Fig.
3, bottom), with an extensive negative surface charge density
along most of the top wire.>*

B. Energy flow from battery to resistor

The second role of the surface charge densities, the provi-
sion of the electric field throughout the space between the
circuit elements, is important for the pattern of energy flow
described by the Poynting vector, SXEXB. The magnetic
field vanishes outside (z<<0, z>L, or p>R), and in the inte-
rior region is purel y azimuthal and given by Ampére’s inte-
gral law, B yxp/a” for 0<p<a and B ,*1/p for a<p<R.
This (perhaps initially surprising) result follows from the ob-
servation that all the current flows (in the column, top and
bottom plates, and outer cage) give rise to only azimuthal
magnetic fields that are functions of p alone—just apply the
right-hand rule! The remarks on p. 170 of Ref. 15 not with-
standing, we may examine the contributions of the current
flow in the different segments of the circuit. The flow in the
2z direction within the column and in the axially symmetric
return path of the outer cage clearly lead to only an azi-
muthal component of B with no ¢ dependence. The surface
current density on the top and bottom plates is radially out-
ward and independent of azimuth, decreasing inversely with
radius for p>a. Application of the right-hand rule to succes-
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distribution away from the end of the resistor, and even at its end.

sive infinitesimal pie-shaped segments of current flow on
each plate shows that the sum of these contributions will
result in only a ¢ component of B, with the discontinuity in
B, decreasing as 1/p for p>a. Once the magnetic field is
established to be azimuthal and independent of azimuth, it is
safe to apply Ampere’s integral law to a centered circular
path of radius p at fixed z to determine its value (and depen-
dence on z and p). For p<R and 0<z<L we find the stan-
dard result, as if the wire were infinitely long. If either or
both of p and z are outside those ranges, we find B=0. In
fact, apart from the central column not being a thin conduct-
ing tube, our circuit is an ideal toroid, with its well-known
magnetic field.

The components of the Poynting vector are evidently only
radial and axial: S,x—E B ,*x~E,/p, S?O.CEqubotI.ip/p. In
Fig. 4 we display for the two battery positions of Fig. 2 the
relative values of components of 27pS(p,z), the integral over
azimuth of the Poynting vector, because that is the meaning-
ful quantity in making a two-dimensional projection of the
azimuthally symmetric three-dimensional circuit. The base
of each vector is at the point (p,z) where S is evaluated,
while its length is proportional to 27p|S|. The flow of energy
from the battery to the resistive components is evident. Its
pattern in space is governed by the magnetic and electric
fields there, the latter determined by the locations and sizes
of the resistor and battery, as well as the resistivity ratio.
Noteworthy is the significant axial flow of energy toward the
resistor outside, but close to, the central column, especially
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visible in the bottom part of Fig. 4. This flow is proportional
to E ,, that is, to the surface charge density. The choice of a
mucfl smaller value of resistivity ratio (e.g., r=>5) is neces-
sary to show clearly the small radially inward component of
S at the surface of the wires (proportional to E ), although it
is very visible for the resistor.

Despite these diagrams there may be a lingering belief that
much of the energy flows within the wires from battery to
resistor. Quite the contrary! Within the central column there
is an azimuthal magnetic field proportional to p and only an
axial electric field, largest in the resistor. The Poynting vec-
tor points radially inward everywhere within the wires and
resistor. It is proportional to p and corresponds to uniform
energy deposition (heating) throughout a column segment of
a given resistivity. Most of the heating is in the resistor, of
course, as the lengths and directions of the arrows in Fig. 4
just outside the column indicate.

The reader may wish to ponder the reason for the similari-
ties between Fig. 4 (Poynting vector) and Fig. 2 (potential),
special to some particular geometries and current flows.

C. Influence of proximity of other circuit elements

Figure 5 demonstrates another aspect of the influence of
the rest of the circuit, the proximity of the cage to the col-
umn. This time the battery and resistor are both centered at
z/L=0.5. The resistor is small and stubby (d/L=0.1, a/L
=0.05). Only half of the range in z is shown. The other half
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can be generated by reflection through the point (x=0.5,
y=0). There is very little change in the surface charge den-
sity right at the end of the resistor (and not much change
further away) for R/L>0.4. For smaller R values, the prox-
imity of the cage and its particular variation of voltage with
z begins to influence the surface charge. For R/L=0.1, the
intuitive positive spike at the end of the resistor is still
present, but otherwise the charge density is of opposite sign,
even on most of the bottom half of the resistor. This counter-
intuitive behavior along the resistor can be traced to the cir-
cumstance that the potential on the nearby cage is a step
function at z/L =0.5, while the potential drop across the re-
sistor is linear from z/L =0.45 to z/L =0.55. The reader more
comfortable with field lines is invited to draw sketches of
those for large and small R/a ratios in order to understand
the peculiarities of the surface charge density as a function of
z.

D. Different conductivity ratios

Figure 6 illustrates the effect of different conductivity ra-
tios (and so different voltage drops along the wires and re-
sistor) on the surface charge distributions for a resistor and
battery both centered in z. The parameters are the same as in
Fig. 5, except that R/L =0.2 is fixed and the resistivity ratios
are r=0.5, 5, and 50. The intuitive spike is smaller, the
smaller the resistivity ratio, in accord with the smaller poten-
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tial drop across the resistor (6V/V~0.85 for r=50, §V/V
~(.36 for r=>5). Away from the end of the resistor, the sur-
face charge density is negative, the more so the smaller the
resistivity ratio, because the potential along the bottom wire
(determined by the resistive properties of the column) is de-
creasing in z more rapidly while the cage potential at the
same z is still at its peak value. Larger radial electric fields
occur for smaller resistivity ratios and are reflected in the
surface charge density along the wire. The example of r=0.5
should be compared with those for »>1. It can be thought of
as two symmetric resistors of length b (perhaps made of
lead) separated by a (iron) wire of length d.

III. COMPARISON OF SURFACE CHARGE
DISTRIBUTIONS FOR CLOSED AND OPEN
CIRCUITS

We now turn to the comparison of the surface charge dis-
tributions for the closed circuit of Fig. 1 and the previous
section with those of the electrostatic system of conductors
(called open circuit, for brevity) obtained by removing the
high resistivity segment of the central column (shaded part in
Fig. 1). For simplicity and to have a finer mesh in the relax-
ation calculations, we consider only resistors and batteries
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calculation of the open circuit. Potential contours (left to right) are ®/V
=0.95 (0.05) 0.50.

that are centrally located in z. We can then use the lower half
of the cylinders (0=<z/L<0.5) and determine the behavior
in the upper half by symmetry arguments.

A word needs to be said about the accuracy of the relax-
ation calculations in the cylindrical geometry. A coordinate
transformation is needed to convert the azimuthally symmet-
ric Laplace equation in p and z into an equation with a Car-
tesian Laplacian (See Appendix B). If the boundary of the
two-dimensional region contains the z axis (p=0), special
methods are needed to avoid serious loss of precision. Even
if the z axis is excluded, errors creep in if the smallest value
of p is only a few mesh points away from the axis. To es-
tablish plausible limits, sample relaxation calculations for the
surface charge density were performed with the closed cir-
cuit and compared with the ‘‘analytic’’ Bessel-Fourier series
solution of Appendix A. (An example is given in Fig. 10, for
which the 40X 60 lattice had a central column radius of 4,
equivalent to column radius a/L =0.05. The agreement be-
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tween the two calculations is very satisfactory, except for the
one point exactly at the end of the resistor, where the finite
mesh size causes a rounding off of the distribution. Smaller
radii show some differences, but even at a radius of 2 units,
the)results are only slightly poorer than those shown in Fig.
10.

The potential contours for the bottom half (0=<z<0.5) of
the circuit with a centered battery and centered resistor are
shown in Fig. 7 for the open and closed circuits with a re-
sistivity ratio of 50 for the latter. The potential patterns are
nearly identical, with only a slight broadening toward z=0
for the closed circuit—the ®=0.95 V contour reaches the
resistor at z/L=0.3, not at z/L>0.45. With the potentials
around the circuit in the two situations so similar, it is not
surprising that the surface charge densities (on both the sides
of the column and the ends of the wires) shown in Fig. 8 are
so similar. In the open circuit, the flat termination of the end
of the wire results in a singular charge density at the circular
edge, varying as £ ® where £ is the limiting distance from
the edge, either in z or in p.> The discrete mesh of the
relaxation method cannot exhibit such a singularity, but it is
integrable and so the total amount of charge can be estimated
reliably. Note that, while the charge at the interface of the
wire and resistor is less than the charge on the end of the
wire with the resistor absent, there is charge on the side of
the resistor (z/L>0.45), not present in the open circuit. It is
as if the installation of the resistor causes mainly a rearrange-
ment of the charge in the immediate neighborhood, without
much change elsewhere—more on this subject in the next
section.

The quantitative changes that occur with changes in the
resistivity ratio are shown in Fig. 9. With a resistivity ratio
r=500, the charge densities on the side of the wire are es-
sentially identical, whether current is flowing or not. Even
the end and interface densities approach each other, at least
on axis. When r=5, the surface charge is much diminished
for the closed circuit as compared to the open, but still peaks
at the end of the resistor.

IV. COMPARISON OF TOTAL CHARGES ON
CENTRAL COLUMN FOR OPEN AND CLOSED
CIRCUITS

A final aspect is the total charge or capacitance associated
with a resistor and its leads, compared with the charge or
capacitance of the leads without the resistor. We consider the
total charge on the bottom wire of our circuit (and the charge
on the adjacent one half of the resistor, when present) for a
symmetrically placed resistor and ‘‘battery’’ (either battery
of zero thickness at z/L=0.5, or the linear voltage drop
along the cage). The top wire (and half resistor) have equal
and opposite charge. The charge on the flat top and bottom
discs and on the cage at p=R are not included. In the open-
circuit calculations, the total charge on the wire is deter-
mined via Gauss’s law, with a surface of integration removed
from the conducting surfaces in order to assure an integrand
that is as smooth as possible. For the closed circuit, the
charge densities are integrated analytically before summation
of the series.

Comparisons between the total charges on the half-
column, with and without the resistor, are given in Tables I
and II for various aspect ratios of the resistor for a resistivity
ratio of 50. In Table I, the resistor is short, of length d/L
=(.1, while the column radius is varied from a/L =0.025 to
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0.250. The resistor’s aspect ratio thus varies from that of
soup can to a deep-dish apple pie. In units of Va, the total
charge in either situation varies by approximately 15%-20%
as a function of a/L, except for the smallest a/L value. The
ratio of the closed-circuit charge to the open-circuit charge
varies by only 2%-3% as a/L changes by a factor of 10, and
is Q cosed/Q open=0.85-0.88 for both styles of battery. With a
centered Dbattery, but a resistivity ratio of 35,
Q ciosed/Q open=0-253—0.263 for the same range of a/L. For a
resistivity ratio of 500, Qqosed/Qopen=1.04—1.01 as a/L
=0.025—0.250. The approach of the ratio to unity as r—o
is not universal, but a reflection of the large ratio of radius to
gap. Only in the limit of a/d>1 (and r—) will both
charges approach the naive parallel plate capacitor result
with negligible fringing fields.

Results for the same resistivity ratio of 50, but a longer
resistor (d/L=0.4) and a different set of aspect ratios, are
presented in Table II (for a centered zero-thickness battery).
For a/L. =0.025, the two numbers for Q. are for two dif-
ferent Gauss’s law surfaces; for larger a/ie , the two surfaces
yielded the same results to within less than 0.3%. Here the
different aspect ratio of the resistor leads t0 Q osed/Qopen
larger than unity by 5%~20% for r=50.

Table III addresses the question of behavior of the ratio of
charges as a function of resistivity ratio for the longer resis-
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tor of Table II. For each value of a/L there is a monotonic
increase of the ratio with increasing r. The small differences
between r=>500 and r=2000 show that the limiting values
for r—o cannot be much greater (independent investigation
confirms this belief). The ratio does not approach unity, at
least for the range of geometries shown. As indicated above,
the differences in detail of the charge distributions for the
closed and open circuits precludes a ratio of unity except in
the extreme circumstances of the wires separated by a gap
(resistor) that is very small compared to their diameter [for
which almost all the charge is found on each end surface
(interface)]. Even at the largest a/L value in Table III, the
aspect ratio is only 2a/d=5/4.

The sampling of results in Tables I-III indicates that, at
least for practical resistors with large resistances compared to
the connecting leads, the total charge or equivalently the ca-
pacitance of the resistor-leads combination is approximately
the same (at the 15%—25% level) as is found for the same
circuit configuration, but with the resistor removed. If one
speaks of the capacitance of the wires for the open circuit,
one may equally speak of the capacitance of the wires and
resistor. A resistor and its leads are one extreme of a lossy
capacitor, with rather less capacitance for its resistance than
one expects from a useful capacitor.
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Table I. Charges on one wire (and one half of the resistor, for the closed
circuit) for a symmetrically located gap or short resistor (length d/L=0.1) as
a function of wire radius, a, for centered battery and linear potential drop at
p=R. Resistivity ratio for the closed circuit, =50, outer cylinder radius
R/L=0.75. Charges in units of Va (equivalent to capacitances in units of a
or 4mey).

Centered battery at p=R

Resistor Resistor present
absent Ratio
a/L Qopen Q closed Q intexf/ Q side Q clused/ Q open
0.025 1.16 1.014 0.054 0.87
0.050 0.918 0.797 0.150 0.868
0.075 0.859 0.748 0.263 0.871
0.100 0.859 0.745 0.386 0.868
0.150 0.914 0.788 0.654 0.861
0.200 0.999 0.855 0.944 0.855
0.250 1.094 0.932 1.258 0.852
Linear potential drop at p=R

0.025 1.20 1.062 0.051 0.88
0.050 0.947 0.833 0.142 0.879
0.075 0.893 0.781 0.249 0.875
0.100 0.892 0.777 0.364 0.872
0.150 0.950 0.823 0.609 0.866
0.200 1.040 0.896 0.864 0.862
0.250 1.143 0.981 1.124 0.858
V. SUMMARY

We have explored the stationary surface charge densities
in simple circuits with a special circuit of a battery, resistor,
and connecting wires (Fig. 1) that possesses enough symme-
try to be amenable to analytic solution but enough flexibility
to illustrate how the surface charges on the resistor and
nearby wires are influenced by other parts of the circuit.
Surface charge densities play multiple roles—(1) they par-
ticipate in providing the internal electric field that causes
current to flow within the conducting elements of the circuit;
(2) they participate in maintaining the potential around the
circuit, especially on those elements obeying Ohm’s law; (3)
they establish the electric fields outside the circuit elements.
The second role can cause counter-intuitive distributions of
surface charge, as they provide along part of the circuit the
voltage variation dictated by the current flow and Ohm’s

Table II. Charges on one wire (and one half of the resistor, for the closed
circuit) for a symmetrically located gap or longer resistor (length d/L=0.4)
as a function of wire radius, a, for centered battery at p=R. Resistivity ratio
for the closed circuit, =50, outer cylinder radius R/L=0.75. Charges in
units of Va (equivalent to capacitances in units of a or 47eya).

Centered battery at p=R

Resistor Resistor present
absent Ratio
a/L Qopen Q ciosed Q inter/Qsice Qatosed/Qopen

0.025 0.533/0.524 0.652 0.023 1.22/1.24
0.050 0.398 0.472 0.067 1.187
0.075 0.358 0.413 0.121 1.154
0.100 0.343 0.387 0.182 1.130
0.150 0.338 0371 0.317 1.129
0.200 0.347 0.372 0471 1.071
0.250 0.359 0.379 0.646 1.056
865 Am. J. Phys., Vol. 64, No. 7, July 1996

Table III. Ratio of closed to open circuit charges on one wire (and one half
of the resistor, for the closed circuit) for a symmetrically located gap or
resistor and battery, as in Table II, but for four different resistivity ratios,
r=5, 50, 500, 2000.

r=>5 r=50 r=500 r=2000
a/ L chosed/ Qopen chosed/ Q open chosed/ Q open chosed/ Q open

0.025 0.757/0.771 1.22/1.24 1.28/1.30 1.29/1.31
0.050 0.735 1.187 1.244 1.249
0.075 0.714 1.154 1.210 1.215
0.100 0.697 1.130 1.186 1.191
0.150 0.672 1.129 1.151 1.155
0.200 0.651 1.071 1.125 1.130
0.250 0.634 1.056 1.110 1.115

law, despite countervailing tendencies caused by other
nearby parts of the circuit. To illustrate the third role, we
show two examples of the pattern of flow of energy from
battery to resistive components.

For resistors with a resistance large compared to that of
the connecting wires and other components, the potential
variation around the circuit with current flowing is quite
similar to that when the resistor is removed—almost all the
voltage drop occurs across the resistor. We are thus led to an
instructive comparison of the surface charge distributions for
closed and open circuits (resistor present vs. resistor re-
moved), the latter computed by a relaxation technique. While
differing in detail in the immediate neighborhood of the re-
sistor or gap, the charge distributions are surprisingly simi-
lar. The ratio of total charge on the lead wires and resistor to
that of the wires alone (for the open circuit) is not far from
unity for large resistivity ratios—the resistor and leads, a
lossy capacitor, has a ‘‘capacitance’’ that can be estimated
from the open circuit of leads without the resistor.

Two appendices contain the mathematical and computa-
tional details.
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APPENDIX A: ANALYTIC
BESSEL-TRIGONOMETRIC SERIES SOLUTION
FOR THE CLOSED CIRCUIT WITH

RESISTOR

The circuit shown in Fig. 1 consists of a central right-
circular conducting cylinder of radius @ and length L with
three segments—two (0<z<b and b+d<z<L) with resis-
tivity pp and one (b<z<b+d) with resistivity p;. At 2=0
and z=L are fastened two circular plates of radius R, as-
sumed of zero resistivity (and so equipotentials, even with
current flowing). At radius R is a cylindrical cage such that
the potential on that surface is

|4 0<z<b'
®(R,z)=1 V(b'+d'—2)/d" } for { b'<z<b'+d’
0 b'+d'<z<L

(A1)
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In the limit d’—0, the potential is a ‘‘ring”’ battery with a
sudden drop in potential at z=b". For b'=0, d’ =L, there is
a uniform potential drop along the surface, ®(R,z)=V(1
—z/L). Such a cage is a type of distributed battery. Such
cages exist, at least in approximate form—the outer set of
electrodes of a time-projection chamber (TPC) is one
example.*?

The potential inside and on the surface of the central cyl-
inder (the slightly lossy wires and resistor of the circuit) can
be found by elementary means. Explicitly, we have, for
0<p=<a,

V-az (0<z<b)
D inside(2) = Purpace(2) = B—raz (b<2<b+d),
a(l —-z) (b+d<z<L)
(A2)
where r =p,/p, is the ratio of resistivities and
14 [L+(r—1)(b+d)]
Clre-vd’ PT T L+e-nd]
(A3)

The electric field in the wire segments is E,=a; in the resis-
tor it is E,=ra.

Because the tangential component of electric field is con-
tinuous in passing from inside the resistive column (p<a) to
the space beyond (a<p), the potential just outside the resis-
tive column is given by (A2). The solution to the Laplace
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equation in the space bounded by the two cylinders and end
plates, with the potential now specified on all the interior
surfaces, can be found by use of the %ppropriate azimuthally
symmetric Dirichlet Green function:?

)

4
Gplp,z;p’,2')= i 21: sin(nmz/L)

1
Xsin(nwz' /LYy [{y(nmp /L)

—Iy(nma/L)Ky(nmp/L)/Ky(nma/L)]

X[Ko(nmp> /L)
—Ko(nwR/L)y(nmp- /L) Ig(n7R/L)]
(Ad)
where
Ko(nmR/L)(nma/L
fa=1- K(;Enwa//L))Iz((anjL;' (A5)
The solution,
1 dGp
P(p,2)=— 75— §¢(p’,2’) }m—,da’, (A6)

requires the radial derivatives of G, at p=a and p=R:
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aGp 4 sin(nmz/L)sin(nwz'/L)
— =— 1 R/L)K L)—Ko(nawR/L) o(nmp/L)], (A7)
( apr)p'=a al ; ano(n’ﬂ'a/L)Io(n'ﬂR/L) [ 0(”77 / ) 0(”7TP/ ) O( ) 0( P ]
4Gp -4 & sin(nwz/L)sin(nwz’ /L)
—F =— LK L)—-K L) Iy(nma/L)]. (A8)
( g’ ) , 7. Ko(nmalL)Io(nmRIL) [Io(nmp/L)Ko(nma/L) o(nmp/L)o( )]
—
To avoid the necessity of integrating over the end caps, we L , , ) ' ,
add to and subtract from the potential the term, V(1 —z/L), =7 I . [P uface(z’ ) — V(1 =2'/L)]sin(nmz"/L)dz
which satisfies the boundary conditions at z=0 and z=L. (A11)
Straightforward calculation with (A6), (A7), and (A8) yields
the solution and

sin(nwz/L)

F.(p,a,R),
fa

(A9)

<D(p,z)=V(1—z/L)+;

where

2 JL .
=— | [®(R,z2)—V(1—2'/L)]sin(nmz'/L)dz’.
L Jo

(A12)

With the potentials defined in Eqgs. (Al) and (A2), the ex-
plicit forms of the Fourier coefficients are

Ky(nmp/L) Ky(naR/L)o(nwp/L)
Fn(Paa,R)::Bn K ( /L K, ( /L)I ( R/L) 2aL(r—1) . .
olnma/L) Ko(nma/L)lo(nm Bn=—?;2——- -[sin(nwb/L)—sin(nmw(b+d)/L)],
IO(H 7Tp/L)
T A RITY 2VL
To(nmR/L) C=rr— [sin(nmb’/L) —sin(nm(b’ +d")/L)].
Ko(nmp/L)Y y(nma/L) (A13)
B Io(nwR/L) (A10) . 37 : )
Ko(na/L)lo The surface charge density”’ on the sides of the composite
and the Fourier series coefficients are cylinder (p=a), o (z)=E /4, is
J
[Kl(n ma/L) Ky(nwR/L)I(nwa/L)
1 < " Ko(nma/L) ' Ko(nmwa/L)Iy(nwR/L) _
oy(z)= 4L =, f—n Ii(nma/L) Ki(nma/L)ly(nma/L) sin(nz/L). (A14)
" Io(nwR/L) Ky(nma/L)o(nwR/L)
—
The charge density on the bottom plate is the electrostatic configuration of the same dimensions (and
battery), but with the resistor absent.
v 1 n In principle, the numerical computation is straightforward;
o5(p)= 47l 4L 2 ]7,; Fu(p,a,R). (A15) in practice, some care needs to be taken. The Bessel func-

The charge density at z=5, 0<p<a, the interface between
the resistor and the wire, is
o{p)=(r—1)a/4m,

0<p<a. (Al6)

Of most interest is the charge distribution along the wire and
the resistor, particularly in comparison with the correspond-
ing distribution when the resistor is removed so that no cur-
rent flows. The total charges on the various parts of the cir-
cuit can be found by straightforward integration. The
expressions are not illuminating. We leave their calculation
as an exercise for the enterprising reader. The sum of these
charges Q;, Q,, and Q;, divided by V can be interpreted as
the capacitance of the whole resistor circuit. The sum,
(Q,+0Q,)/V, may be interpreted as the capacitance of the
wire and resistor combined. For a<$R, this capacitance is
small compared to that of a circular disc capacitor consisting
of the top and bottom plates. Nevertheless, it will be of in-
terest in comparison with the corresponding capacitance of
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tions 7,,(z)(K,,(z)) grow (decrease) exponentlally with z. It
is prudent to examine the terms in the series of (A10) and
(A14) for large n to isolate the large n behavior and make
appropriate modifications in the details of summing the se-
ries. In the limit of p finite and R—, the solution simplifies:
fn—1, the terms in (A10) and (A14) multiplying C, go to
zero, and the second terms in the square brackets multiplied
by B, vanish. In exhibiting the results it is convenient to use
ratios (a/L,b/L,d/L R/L) for the circuit dimensions and to
express the potential in units of V and the surface charge
density’” in units of V/47L (the same numerically as the
radial electric field in units of V/L) as functions of p/L and
z/L. The necessary program was written using Symantec’s
Think Pascal software and run on a Macintosh LCII and
(much faster) on a Macintosh Centris 650.

To obtain the potential for the original example of an
infinitely long resistive cylindrical wire of radius a, with
internal electric field E, surrounded by a grounded cylinder
of radius R, from Eq. (A9), we put V=EyL,z=z'+L/2, and

19-21
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®=0'+V/2. With r=1, B,=0. We must average the poten-
tial for d'=0, b’ =0 (battery at z=0) and d' =0, b’ =L (bat-
tery at z=L) to make ®'=0 at p=R. For L —, with fixed n
and p, F,/f, has a well-defined limit. The resulting Fourier
series in (A9) can be summed™ to give

, In(p/R)
m, asp<sR. (A17)

O’ (p,z)=—Eyz
APPENDIX B: RELAXATION CALCULATION OF
CYLINDRICAL OPEN AND CLOSED
CIRCUITS WITH AZIMUTHAL SYMMETRY

The open circuit consists of an outer right-circular cylin-
der of radius R and length L having the potential given by
Eq. (A1) on its surface, two circular conducting plates at
each end, one at potential V(z=0) and the other at zero
potential (z=L) and two solid, right-circular, conducting
cylinders, one of length b and the other of length (L—b~d),
mounted on axis, in from each end. These cylinders, the
wires of the circuit, have a gap between them of length d=L
—2b (the length of the resistor in the closed circuit). In
contrast to the same geometry, but with the central region
filled in by the resistor, the solution for the potential every-
where is not expressible in terms of an expansion in terms of
known orthogonal functions. We resort to the numerical
method of relaxation. The azimuthally symmetric cylindrical
geometry poses some problems, happily surmountable, be-
yond the standard two-dimensional relaxation computations.

For convenience, the coordinates (p,z) are replaced by
(y,x), respectively. The Laplace equation in cylindrical co-

ordinates is, in terms of x and y,
’d N 14 od 0 B1
x?y ay y ay | B1)

With the substitution, U(x,y)= \/;tb(x,y), Laplace’s equa-
tion for @ is converted into a Poisson-like equation for U
with a Laplacian in Cartesian coordinates:

U N FU 1

"yt ay?
We apply the relaxation method to a square lattice with spac-
ing h, labeling the lattice site at x(i)=ih, y(j)=jh by the
pair of integers (i,j). If F(x,y) is a well-behaved function in

the neighborhood of (i,j), but not necessarily harmonic, by
explicit Taylor series expansions the ‘‘cross’’ sum,

S1=F(i+1Lj)+F(i,j+1)+F(i—1,j)+F(i,j—1),

U. (B2)

can be expressed as
S1=4F(i,j) + h*V2F + h*(F 1y + F )12+ O(R),
(B4)

where the subscripts indicate partial differentiation and all
quantities are evaluated at (i,j). Similarly, the ‘‘square”
sum,

§,=F(i+1,j+1)+F(i—1Lj+1)+F(i—1,j—1)

+F(i+1,j—1) (B5)
can be expressed as
S,=4F(i,j) +2h2V2F_h4(Fxxxx+FY)’yy)/3
+RVAVIF) 2+ O(hS). (B6)
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If V°F=0 as in the conventional two-dimensional calcula-
tions, the averages S$;/4 and S,/4 each give the value of
F(i,j), correct to order h* inclusive. An improvement can be
obtained by forming the average,

S=15,+1S,]. (B7)

The result is

< .03 ok
S=F(z,])+ﬁh \Y F+Z(—)V2(V2F)+0(h6). (B8)

If V?F =0, then § gives F(i,j), correct to order h° inclusive,
and so gives higher accuracy than either §; or S, at the
expense of doubling the number of computations per itera-
tion. When V2F#0, (B8) has the advantage of permitting
substitution of V2F on the right-hand side for the solution of
Poisson-like equations.

In our situation, where V2U = — U/4y?, a lowest order ap-
proximation of the Laplacian of U/4y? [for the third term on
the right of (B8)] leads to the iteration scheme,

- . = 1 . - 1
Usewli,J)=S(Uyqg) + 2072 Uga(i,j)+ 160} S1(Uogia)
(B9)

or alternatively,

_ 1
Upnew(8,J) = S(Uqq) + 160;7 S1(Uga) |(1~1/20j%) 71,
(B10)

We use (B10) in our computations, but (B9) works just as
well.

It is obvious that there are likely to be difficulties at smail
j values (small radii). If the region of interest includes the
axis there are potentially large errors. There are no infinities
because the line segment at y=0 (j=0) is specified to have
U=0 along it, whatever the potential there (recall that
U= \/§<I>). Nonetheless, if the axis is part of the three-
dimensional region where the potential is desired, as it is in
our situation, the axis is not a boundary ‘‘surface’” and the
potential is not given a priori there. Relaxation in U with
U=0 on axis (and U having nonzero values on other sur-
faces) leads to a valid relaxation solution for U, but the val-
ues of the potential ® on axis must be found by extrapolation
from sites with j #0. Such a procedure is highly inaccurate in
general, in part because all values of U on nearby boundary
surfaces are scaled with \/)—) factors and so are small, what-
ever the potential on those surfaces.

For our geometry the problems associated with y =0 can
be circumvented by using an approximate analytic solution
of the Laplace equation in terms of a Bessel-Fourier series
in the cylindrical region, (0<p<a),(b<z<b+d). The
boundary values of the potential are =V at one end face
and ®=0 on the other, while on the cylindrical surface p=a,
® is known (to some accuracy) at a discrete set of points in
z. If the potential were given as a function ®(a,z) at every
point along the cylinder, the problem would be exactly solv-
able in series form by quadrature. Given only n values &,
(k=1,2,...,n), an approximate solution can be found with a
finite series of O(n) terms. Suppose the @, are the values of
®=U/\ly at the lattice sites (k, j.) corresponding to y=a
and some set of i values. Then the approximate solution with
those @, can be used to calculate U(k,j,—1) for use in §;
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and S, to find new values of U(k,j,). After another iteration
there is a new set of &, ; a new approximate solution can be
found and a new set of U(k,j,—1).

The procedure is thus to set the region for relaxation as
that bounded in x by x=0 and x=L, and in y by y=a and
y =R, with the potential fixed on the surfaces of the plates,
x=0, x=L, the cage, y=R, and the wires, (y=a, 0<x<b)
and (y=a, b+d<x<L). The ‘‘gap’’ (former surface of the
resistor), y=a, b<<h(b+d), is treated as part of the inte-
rior. At the start, a guess is made for U(i,j) at all interior
points. The “‘gap”’ values of U with y=a and b<x<b+d
yield the &, for the approximate analytic solution for y<a
and so the values of U(k,j,—1), which can be viewed as
temporary true ‘‘boundary’’ values, to be used with the oth-
ers in finding new values by iteration. After each iteration,
the process is repeated. Since the approximate solution con-
sists of a finite series of a few terms, the time spent in this
subsidiary computation for each iteration is not excessive.

To find an approximate analytic solution in the region,
0<y<a, b<x<b+d, with ®=V, at x=b and ®=V, at
x=b+d, we begin with the axially symmetric solution of
the Laplace equation, assuming that the boundary value
®(x,a) is a continuous known function,

®(x,y)= mgl A Jo(mmy/d)sin(mmx/d)

+(Vo—V)x/d+Vy, (B11)

where 1,(z) is the modified Bessel function of the first kind
of order zero; we have shifted the origin in x to x=>5. The
coefficient A, is given by

2 d
Io(mmald)A,== fo [D(x',a)— (V= Vy)x'/d— V3]

Xsin(mx'/d)dx’. (B12)

If d=Nh and the function ®(x,a) is replaced by a discrete
set of evenly spaced values ®, at x=kh (k=123,....N
—1), we approximate the series of (B11) by the first (N —1)
terms, then put x=kh, y=a for each k value in tumn to
obtain (N—1) simultaneous linear equations for the (N —1)
coefficients A, . The system can be inverted to find all
(N—1)A,,. An equivalent and simpler alternative procedure
is to limit the series in (B11) to the first (N—1) terms and
determine the coefficients A,, by approximating the integral
in (B12) by a simple sum (trapezoidal rule),
N-1

Io(mmald)A,~— kzl [®,— (Vo= V)khid—V,]

Xsin(mwkh/d). (B13)

Given a set of U(i,j,) values, we construct the ®,, com-
pute the coefficients with (B13), then insert them into the
finite series (B11) withy=a—h (j=j,—1) to find ®(x(i),y
=(j—1)h) and so U(i,j,—1). The relaxation iteration then
proceeds according to (B10) for all the interior points of the
lattice. When the iterations attain the desired degree of pre-
cision, the final U(i,j,) values are used to construct the po-
tential (B11) for the region (b<x<b+d,0<y<a).

The relaxation technique can be applied in a straightfor-
ward way to the segmented resistive column, where the wires
and ‘‘gap’’ now have known potentials from Eq. (A2). By
comparison with the results of the analytic Bessel-
trigonometric series we can assess the dangers of small inner
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radii. The region of interest is bounded in x by the planes
x=0and x=L and in radius by the cylinders y=a and y=R.
The planes (circular discs) have zero resistivity; the plane
x=0 has ®=V and the plane x=L has ®=0. The outer and
inner cylinders now have potentials specified by (A1) and
(A2). The relaxation computation is standard, with the po-
tential known and fixed on all the boundaries. The only po-
tential concern is the presence of the factors of 1/j 2 in (B10).
An example of the comparison of results for the surface
charge density from the two methods is shown in Fig. 10 for
a/L=0.05, b/L=0.45, d/L=0.1, r/L=0.75 and a resistivity
ratio of 50. The relaxation computation has a lattice of
40X60 for the half-region, 0<x<<L/2. The inner cylinder
has j,=4. The comparison shows that, apart from the imme-
diate neighborhood of the interface between the wire and the
resistor, the radial derivatives of the potential agree quite
well, even though in the relaxation computation the deriva-
tive is approximated at (i,j,) by

hE ,= —ho®/3p~1.50(i,j,) —2.0®(i,j,+1)
+0.50(i,j,+2). (B14)

The lack of precise agreement at x=> is expected since the
axial derivative of the potential changes discontinuously
there and the spacing between lattice sites is such that only
three or four points lie in the peak region. The analytic and
relaxation values of the potential in the interior agree very
well.

The general agreement shown in Fig. 10 demonstrates that
the relaxation technique works adequately for azimuthally
symmetric potential problems down to quite small radii. For
the open circuit problem, the approximate analytic series in
the region near and at p=0 assures that the small radius
““disease’” can be circumvented. Only at sharp corners,
where the charge densities are singular, does the discreteness
of the lattice cause the relaxation technique to fail quantita-
tively.

For the open circuit, electrostatic situation, the capacitance
of parts or all of the circuit can be determined through the
use of Gauss’s law to find the appropriate total charge. A
path can be chosen away from the surfaces [e.g., in y for
fixed x=(b+L/2)/2, or in x for fixed y=a+ 2h], so that the
x or y derivative of the potential can be reliably estimated by
a formula analogous to (B14), but symmetric, rather than
one-sided. The sum of those derivatives weighted with
21rh?j, is the trapezoidal estimate of the integral of the nor-
mal component of the electric field over the surface. Simp-
son’s rule or other estimates of the integral can be used, if

. desired. The relaxation program was written using Syman-

tec’s Think Pascal software and run on a Macintosh LCII and
a Macintosh Centris 650.
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The elements of the Dirac algebra are represented by sixteen 4X4 gamma matrices, each pair of
which either commute or anticommute. This paper demonstrates a correspondence between the
gamma matrices and the complete graph on six points, a correspondence that provides a visual
picture of the structure of the Dirac algebra. The graph shows all commutation and anticommutation
relations, and can be used to illustrate the structure of subalgebras and equivalence classes and the
effect of similarity transformations. Since gamma matrices are the direct products of two Pauli spin
matrices, they provide an appropriate way to describe a system of two spin-1/2 particles. Such
multiparticle spin states are intimately connected with the theorems of John Bell. The graph is
helpful in analyzing an important example of the Bell-Kochen—Specker theorem. © 1996

American Association of Physics Teachers.

1. INTRODUCTION

In this paper I wish to point out a useful isomorphism
between the Dirac algebra and the complete graph on six
points. The isomorphism provides a picture of the algebra
and illustrates its underlying structure. I feel that a visual
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representation of the Dirac algebra is of great benefit, be-
cause it can provide an additional insight that is not easily
expressed with words or equations. And the diagram also has
a practical side. It can be a fast and convenient way to find
the right gamma matrix in a given situation.

Gamma matrices can be constructed as direct products of
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