VI. SUMMARY

I have argued that Newton’s first two laws of motion are
not definitions of force but rather contain strong state-
ments about the nature of the physical world that are, in
principle, falsifiable. In particular I argued that the first
law postulated the existence of an ensemble of straight lines
which, together with the Newtonian planes of absolute si-
multaneity defined the geometry of Newtonian mechanics.
The transition to special relativity was effected by replac-
ing these planes by light cones and the transition to general
relativity by replacing the absolute geometry defined by
these objects by a dynamical one.
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The method of images is applied iteratively to compute precisely the electrostatic force between
charged spheres. The results are compared to the experimental results reported by Coulomb and
show that Coulomb overlooked induction effects revealed in his data.

Most textbooks introduce electricity by describing Cou-
lomb’s experiment and his results which ““can be represent-
ed by F~1/d?.”" This has troubled me since I was a stu-
dent. When the similarly charged balls are close enough to
produce a detectable force, that force must be large enough
to move the charges to the far sides of the spheres, thus
producing a weaker force than 1/d?. In other words, the
effective d has increased. When the balls are oppositely
charged the attractive force brings the charges to the near
sides so that the effective d is smaller than the center-to-
center distance. Unwilling to settle for such a qualitative
description, I decided to calculate the actual forces
between charged spheres. The result is a tidy problem in
mathematical physics suitable for undergraduates. Of
course, the standard form of the force, F~ 1/d 2, does apply
to point charges that are incapable of polarization effects.
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It requires quantum electrodynamics to calculate those ef-
fects when two electrons are really close. After performing
the calculations for the force between charged conducting
spheres (see Appendix for details), we decided to compare
our results to the actual experimental forces measured by
Coulomb. Our calculated results (see Fig. 1) had con-
firmed our expectation that the repulsive force increases
less rapidly than 1/d? and that the attractive force in-
creases much more rapidly.

A brief annotated translation of Coulomb’s original pa-
per’ can be found in Magie.> Coulomb’s description of his
apparatus is somewhat vague. For example, the pith balls
were “2 or 3lines” ({to] in.) in diameter. The radius of the
arm that supported the moving ball is not given but from
the illustration it was evidently about 18 lines ( 11in.). (See
Fig. 2.) The distance between the centers of the balls was
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Fig. 1. Behavior of the electric force between identical charged spheres as
a function of center-to-center distance.

Fig. 2. Simplified diagram of Coulomb’s apparatus for measuring electro-
static repulsion.
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d = 2a sin 8 /2, which Coulomb treated as approximately
a6. He found that when the angle was decreased from 36° to
18°, the force quadrupled, within an error of less than 1%.
However, to quadruple again the angle had to be reduced,
not to 9°, but to 8{°. Coulomb noticed this ° error but made
no further comment on it. Evidently he did not expect his
apparatus to give a more precise result even though it was
capable of it. Of course, we know that the experiment was
reporting the force accurately. It was the theory that was in
error!

At 8°or 9, the parameter d /a is somewhere between 3.7
and 5.5, where we see from Fig. 1 that the force is about 5%
less than 1/d?. Coulomb was so eager to prove the 1/d?
law that he overlooked the experimental observation of po-
larization.*

Because Coulomb did not specify the exact diameters of
his pith balls, we also calculated the repulsive force curve
for balls with diameters in the ratio 3:2. The resulting force
at the distance d /(a, + a,) = 2 or more is only slightly
less (~1%) than the force shown in Fig. 1, leaving our
conclusion intact. However, at close approach, the repul-
sion between dissimilar balls falls significantly (~50%)
below the curve for identical balls shown in Fig. 1.

It is too much to expect Coulomb to have understood the
concept of equipotential surfaces in 1785. However, he did
know that the electrical “fluid” was mobile on the pith balls
since if it were not so he could not have charged them. He
failed to recognize, however, that this same mobility would
cause the charges to move on the balls in the presence of the
electrical force, thus spoiling his effort to identify the cen-
ter of a ball with the center of the charge.

Coulomb’s torsion balance was and is® an extremely sen-
sitive and precise device for physical measurements. How-
ever, it is a small miscarriage of justice to name the electro-
static force law in his honor. Most scientists of his time
expected the force law to be 1/d* and others® had mea-
suredittobe 1/(d**¢), for example. It was Priestley’ who
recognized that if cork balls inside a charged cup were un-
affected by the charge on the cup then F~ 1/d? exactly. He
drew this conclusion from Newton’s work on the force of
gravity within a hollow sphere. This theoretical insight is
far more satisfactory in establishing F~ 1/d? than any ex-
periment, which, as can be worked out from Table I, will
give a force law more like F, ~1/D*—1/D*—2/D*,
etc., where D =d /a.

When Coulomb attempted to measure the attractive
force between unlike charges he met a serious problem. The
force increases so rapidly at small distances that his torsion
balance, for which the force was linear with distance, could
not compensate. To measure the attractive force he used a
suspension with so little restoring torque that its natural
period of oscillation was very long. He then brought a large
charged sphere close to a suspended disk and measured the
period under conditions in which the restoring force was,
for all practical purposes, the electrical force. (See Fig. 3.)
Coulomb’s large sphere in this experiment was 6 in. in radi-
us and the small disk was about 7 in. in radius. The separa-
tion in various trials ranged from 9 in. (center-to-center) to

18 in. Coulomb tells us he charged the disk by induction
when it was “‘some inches” away.

There are two ways of estimating the charge on the small
disk. A disk carrying charge g has a potential
1.5708( = m/2) times the potential of a sphere of the same
radius.® If we compute the potential at the center of the disk

ep
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Table I. Calculated values of F as a function of center-to-center distance.

Distance D F F F
asamultipleof a attraction Coulomb  repulsion F*

10.0 0.010041 0.01 0.00996  0.009 990
9.0 0.012415 0.012346 0.012277 0.0121190
8.0 0.015751 0015625 0.015501 0.015373
7.0 0.020656 0.020408 0.020 165 0.019 975
6.0 0.028 324 0.027778 0.027250 0.026 963
5.0 0.041404 0.04 0.036 680 0.038 272
4.0 0.067097 0.0625 0.058 457 0.058 106
3.0 0.134819 0.111 111 0.094437 0.096 022
25 0240647 0.16 0.121091 0.126 208
2.4 0285277 0.1736 0.127089 0.133 005
2.3 0.352514 0.189036 0.133313 0.139797
22 0470269 0.206612 0.139794 0.146283
2.1 0.759739 0.226757 0.146583 0.152019
2.05 1.225 38 0.237954  0.15012  0.154 385
2.01 3.764 5 0.247519 0.154 0.155 924
2.0 0 0.25 0.154 0.156 25

*F*=1/D?* — 1/D* — 2/D°® with D = d /a; F * isasimple function that
closely approximated F,,1ion -

due to the large sphere and place a charge on the disk of
opposite sign so as to reduce its potential to zero, we get
daisk = 0.014 920, when the disk is 8 in. from the cen-
ter of the large sphere. This calculation ignores induction
effects on the large sphere. Alternatively we can replace the
disk with a small sphere of equal capacitance, in which case
the small sphere will have a radius of
2/7mX 13 X Qiarge = 0.0309a,,,,,. . Using the image charge it-
eration technique described in the Appendix, we find that
the small sphere is at zero potential when it is charged to
about — 0.0240,,,,..., about 50% more charge!

With these figures in hand, we can proceed to calculate
what Coulomb should have observed for the attractive
force. Of course, the actual charge on the disk could be
considerably different from our estimated value since we
have no way of knowing what Coulomb meant by ‘“some
inches.” In the absence of induction effects, the charge on
the small disk would not matter in determining the force
law. However, in the presence of induction it clearly does.

+a a» | =0
o )
M

Fig. 3. Simplified diagram of Coulomb’s apparatus for measuring electro-
static attraction. :
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We know that even in the event g4, = O there is an attrac-
tive force! We return then to our iterative procedure to
compute the attractive force between a large sphere
(@1arge = 1) and a small sphere (@) = 4) carrying @,
and — 0.0240Q, respectively.

Table IT compares the results of the force computation
including induction with the pure 1/d* results. We have
suppressed the 1/47e, factor and the ratio of inches to
meters in both columns. It is clear that the attractive force
is much stronger than 1/d? ford /a < 1.5.

Coulomb’s torsional oscillator should have a period in-
versely proportional to F'/2, therefore, directly propor-
tional to dif F~ 1/d* . He presents his results in the form of
a table:

The distances are as the numbers: 3 6 8.

The times of the same numbers of oscillations are:
20 41 60.

By theory they ought to have been: 20 40 54.

He then explains the small discrepancy at large distance by
claiming that the charge had probably drained away a bit.
(Note: He evidently did not reverse the order of the experi-
ment to see if that was really the case!)

From our enlightened position, we choose to present his
data differently, making the period at large separation the
most reliable. We then have the following.

The distances are as the numbers: 8(24 in.)
in.) 3(9in.).

By theory (1/d? ) the times should be: 60 45 22.5.

By theory (corrected for induction) the time should be
60 45 21.5.

By experiment the times are: 60 41 20.

Clearly, induction effects can account for a substantial
part of the discrepancy.

The intellectual climate of the 18th century was such
that Coulomb could not hope to gain much respect from
inventing a clever and sensitive apparatus for measuring
forces. Proving that electrical charges obeyed a force law
identical to the gravitational force law, on the other hand,
would have great philosophical significance. We should
not be surprised, therefore, that Coulomb “stretched” his
data to “prove” the 1/d?* law rather than to respect the
precision of his instrument enough to find an entirely new
electrical effect.

Since our calculation technique was so convenient we
proceeded to examine the induced force in two additional
cases: (1) when an uncharged sphere is brought near to a
charged one; and (2) when two equally charged spheres
are of different radii.

6(18

Table II. Representative forces in simulation of Coulomb’s attractive ex-
periment.

Distance D
as a multiple of @ Force with induction Force, 1/D?
3.0 0.111 0.111
2.5 0.161 0.160
2.0 0.252 0.250
1.5 0.462 0.446
1.333 0.604 0.562
1.167 0.942 0.733
1.083 1.812 0.850
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When our very small sphere was brought, uncharged,
near to the large sphere the resulting force which we calcu-
lated was essentially zero. One can interpret that result
either by saying that the gradient of the field is too small
over the diameter of the small sphere or by noting that the
image charges are small and highly localized on both
spheres. When the small sphere is charged, however, and
brought near the uncharged large sphere the resulting force
is very large. Essentially, the small sphere sees its negative
image close by and is strongly attrached toit. Or, in a differ-
ent description, the potential of the small sphere is large
and the field gradient over the diameter of the large sphere
is also large.

When the two spheres are of different radii a surprising
result occurs. If @, > 1.24a, there exists a center-to-center
spacing where the force between equally charged spheres
becomes attractive. Of course, in the laboratory we seldom
deal with equal charges on dissimilar spheres. It is more
common to charge the spheres to same potential.

In Fig. 4 is shown the position of the null point, at which
the force between equally charged spheres changes sign
from repulsion to attraction. Distances in Fig. 4 are ex-
pressed as d /(a, + a,) and the abscissa is the “eccentric-
ity” or a,/a,.

These results should not surprise us. If the larger sphere
were very much larger than the smaller one its charge
would create only a small repulsive force on the small
sphere. The small sphere, on the other hand, would be at-
tracted to its own oppositely charged image by a much
larger force. Our calculations show that the onset of this
effect occurs at about ¢, = 1.24a,.

The program we have written is convenient for the solu-
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Fig. 4. Unequal spheres, equally charged; center-to-center distance where
force changes sign.
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tion of any electrostatic problem involving two spheres,
without the need for the solution of a differential equation
with boundary conditions.

APPENDIX

Consider two similar charges, g,, a distance d apart. If
we surround one charge with a conducting sphere of radius
a and require that the sphere be an equipotential surface,
we find that an image charge of magnitude

q, = —aqy/d (A1)

must be placed a distance a*/d from the center of the
sphere to produce a spherical equipotential at the radius a.?
The original charge g, at the center of the sphere must be
increased to g,' |¢, | to maintain the total charge equal to
qo- A second conducting sphere of radius ¢ around the
second charge g, will be an equipotential if two new image
charges are placed inside, corresponding to the images of
g, and of g;' |g, |- Each image charge is smaller than its
object charge and of opposite sign. By repeated iteration of
this scheme, a task well suited to a personal computer, we
found that a string of charges of alternating sign and rapid-
ly decreasing magnitude can replace the charged spheres
and produce the appropriate field. Figure 5 shows the loca-
tions of the image charges when d = 2.1 a.

The computer program calculates all of the ¢, and x,
from

D, =d—x,, ,,
Xp41 =1/D,,
and

9niy = —qn/Dn’ (AZ)

with
9 =1,
D, =d,
and
x, =0.

The resulting charges are in the right proportions but no
longer sum up to @, so their sum S'is calculated and a new
go = 1/S is chosen. The process is repeated until

|S — 1| <10~ ° To calculate the total force between the
spheres we simply sum all of the forces between the sets of
charges, a task that the computer does very quickly. In
practice, when the distance between the spheres d is greater
than 4a, as few as 10 charges suffice for six-digit accuracy.
On the other hand, when the spheres touch, d = 2a, and
more than 100 charges on each side are needed to compute

q,= +.419
q,= -.282
a,= +.198
q.= -
q.= +.102
q,=+1.428 q,= -680 j—f/
}; 1 i LU ﬁ|
Center of Surface of
sphere sphere

Fig. 5. Distribution of image charges when D = 2.1aq, repulsive case.
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the force. Because the charges alternate in sign, the series
does converge for all d > 2a.

The problem of the attractive force between unlike
charges is tackled in the same way. The charges g; appear
at the same positions and with the same magnitudes but
this time are all of one sign, negative on one side and posi-
tive on the other. The resulting total force between the
charge systems is slightly larger than a*/d * but, unlike the
repulsive case, begins to diverge rapidly as d - 2a. In Fig. 1
are plotted the logarithms of the repulsive, the a>/d?, and
the attractive forces as a function of the logarithm of the
parameter d /a. Of course, the a*/d * graph is a straight line.
The distribution of image charges in a typical example is
shown in Fig. 5.

The calculation of electric potentials, fields, and charge
distributions by the method of images is described in many
undergraduate and graduate electricity texts. Smythe’s
text® is particularly useful because it was written after the
appearance of the computer, which has made formerly im-
possibly tedious calculations feasible. Smythe, for example,
shows that the image charges for two conducting spheres
satisfy a difference equation that can be solved in closed
form:

g, = R, R, sinh a/R, sinh na + R, sinh (n — 1)a
with

a=cosh~'(d?—~R? —R3/2R,R;).

We have chosen to present our calculations in computer
iterative form simply because the interesting questions of
physics and of mathematics (convergence, divergence) are
more transparent in that form. Either method can be used
to calculate the potentials, forces, and capacitances
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between conducting spheres of arbitrary radius and spac-
ing.
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