Does a group velocity larger than c violate relativity?
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It is often assumed that relativity restricts the group velocity to be less than the speed of light. In
this article, this assumption is examined in the context of electromagnetic waves propagating
through a dilute plasma. The index of refraction is found from the phase shift in a thin slab of
plasma. The response of the same slab to a incident §-function pulse is also found. After passing
through the slab, the pulse acquires a constant tail, in the limit of a thin slab, and the response to an
oscillatory wave is recovered by superposition. By considering a material in which the tail has the
opposite sign, it is shown that the group velocity can be larger than ¢ without having any signal

propagate faster than c.

I. INTRODUCTION

For a given medium in which the expression for the dis-
persion relation @ (k) is known, both the phase velocity v,

= w/k and group velocity v,, = dw/dk are mathematlcal-
ly defined! for any k. For a wave packet with a spread in
wavenumber k, some ambiguity arises in the values of the
phase and group velocities because of the spread in £, but,
for narrow packets in k space, the uncertainties in these
values are small. For such packets, one can conclude un-
ambiguously whether one velocity or the other is larger
than or smaller than the speed of light c.

It is also possible to identify phys1ca11y the phase velocity
of a wave packet: The phase velocity is the velocity of a
point of constant phase, e.g., the place at which the wave
amplitude goes through zero. The corresponding physical
description of the group velocity, i.e., the velocity of a point
on the envelope of the wave packet, may seem as well de-
fined as the phase velocity, but, in some cases, it is not. If
the shape of the wave packet is changing rapidly as the
wave propagates, then one is not sure what point on the
envelope at a later time corresponds to a given point at an
earlier time, removing the possibility of a unique determin-
ation of the velocity of the envelope. Even picking a unique
point, e.g., the maximum of the envelope, may not lead toa
desired description of the group velocity, if, for example,
one side of the wave packet is being enhanced and the other
side diminished.

Since the phase velocity does not represent the velocity
of propagation of energy or transfer of information, v, can
be less than ¢, equal to ¢, or greater than ¢. The group
velocity, on the other other hand, is often assumed to be
restricted by relativity to v, <c. However, this restriction
cannot be a general principle, since there are well-known
physical examples in which v, > c. One example is anoma-
lous dispersion, found in some frequency interval near a
resonance.” However, this interval is also a region of strong
absorption, and any wave packet with characteristic wave-
number in this region is changmg shape sufficiently rapidly
that the meaning of v, is blurred. In addition, because the
wave packet is strongly attenuated as it propagates, one
cannot follow the wave packet for a long time in order to
make the uncertainty in position within the wave packet
small compared to the distance traveled. The lesson to be
learned from this example is that if the wave packet is
changing shape sufficiently rapidly, relativity does not re-
quire that the calculated group velocity be less than the
speed of light.
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I1, INDEX OF REFRACTION FOR A DILUTE
PLASMA

Electromagnetic waves propagating in a dilute plasma
provide a system in which the relation between group ve-
locity and relativity can be explored. The problem can be
attacked in two ways: (1) by a standard analysis of the
propagation of waves of a definite frequency; and (2) by a
derivation starting with a sharply peaked incident pulse.
The latter approach has the advantage that the waves gen-
etated by the medium will be seen to be consistent with
relativity, and so will be their superposition to form a wave
of definite frequency.

The dispersion relation for a plasma, assuming negligible
damping, is’

o’ =k* + ok, (H
where the plasma frequency w, is given by ’
w; = Ne*/me,, (2)

where & is the number density of electrons and — e and m
are the charge and mass of an electron. The phase velocity
is (foro>w,)

von =w/k=c(1 —wl/0®)""?>c, (3)

which does not violate relativity for reasons outlined
above. However, since 20 do = k dk 2, (w/k) (dw/dk)
= VU, = ¢, and, therefore,

d(l) wZ 172
vg,=ﬁzc(l—w—’;) <c. (4)

At this point in the derivation, a comment is often added
along the following lines: “Of course we expect that the
group velocity must be less than ¢ because of relativity.”
Some texts have statements or problems that indicate a
similar expectation.*

Suppose, however, that results in Eqs. (3) and (4) had
come out the other way, i. e., with v, <c and v,, > c. This
would have occurred if, for example, the dispersion rela-
tion were instead

o® =k’ — wi, (5)
in which case v, and v, are given by
von =¢(1 + w3 /0*) V<,
=c(1+w2/w2)'/i>c (6)

Would we have concluded that the last result, Uge >C, 18
inconsistent with special relativity?
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To understand how a dispersion relation of the kind giv-
en by (5) might arise, let us review the results of a standard
treatment of the origin of the index of refraction as given,
for example, in the Feynman lectures.” Here, the number
density N is assumed to be sufficiently small (a dilute plas-
ma) that the index of refraction can be approximated as

n=c/vy =(1—aw/0’)?*=1 - wl/20". (7

In going through a thin slab of plasma of thickness Ax, the
presence of a material with an index of refraction n#1
implies that an incident sinusoidal wave will be shifted in
phase with respect to a similar wave propagating in a vacu-
um. If the slab is located at x = 0, the electric field of the
incident wave is,

E . =Ee"*~“", forx<0, (8)

where the real part is assumed. The wave for x > Ax is then
Et . =Eoei(kx—mt)ei(kn—k) Ax

=E = [1+i(k, — k)Ax]

=Einc +l(kn _k)Ainnc s (9)

where Ax is assumed to be small and we keep terms that are
linear in Ax. The wavenumber in the vacuum is k = w/c
and in the plasma is k, = nw/c.

Of the two terms in (9), the first term is the incident
wave and the second term is the wave generated by the
motion all of the charges in the slab of plasma in response to
the incident wave. Writing E,, = E;. + E,, the scattered
contribution to the wave E| is

E, = —iNe*AxE,, ./ (2meywc).

s (10)
This result is consistent with what is obtained if the radi-
ation fields of each charge are superimposed,’ assuming the
charges move according to the equations of motion

— iwt

(1)

Note that if the sign of the force on the right-hand side in
(11) was reversed, E, would be reversed, and the index of
refraction would be greater than 1 rather than less than 1. If
such a case existed, then v, would be less than ¢ and v,
would be larger than ¢, as for the dispersion relation (5).

mj= —eEye

III. RESPONSE OF THE SLAB TO AN INCIDENT
5-FUNCTION PULSE

An alternate way to approach this problem is to consider
an incident 8-function wave pulse and to find the response
of the thin slab to this pulse. In this manner, we can check
causality directly, because there should not be any wave
generated by the slab until the pulse has reached the slab,
Then, since the incident pulse is moving with the speed of
light, no wave signal can be added ahead of the pulse once it
has passed the slab. Because the waves generated by the
charges all move with the speed of light, but in different
directions, the components of velocities in the direction of
motion of the incident pulse will be less than or equal to the
speed of light. Therefore, the most that can happen is that
the charges in the slab produce a resultant wave which,
when superimposed on the incident pulse, adds a tail of
some sort to that pulse.

To find the form of that tail, we take the incident pulse to
be an electric field in the + y direction with waveform

E . =A8x—ct). (12)
In response to this field, each charge in the slab, initially at
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rest, receives a kick at time ¢ = 0, changing its velocity sud-
denly to v, = — ed /mc, which we assume to be much
smaller than the speed of light so that magnetic forces can
be neglected. The analysis of the fields of such a “kicked”
sheet of charge has been given in a previous article.® Since
we want only the total electric field, and not that generated
by the individual charges, the following argument is suffi-
cient to determine the electric field after the §-function
pulse has passed.

Because the charges in the slab at a given time have the
same velocity in the — y direction, there will be a volume
current density and, therefore, a surface current density, if
Ax is small, in the + y direction. From Ampére’s law, a
surface current density implies a discontinuous magnetic
field. By symmetry, the magnitudes of the magnetic field
must be the same on both sides of the slab, with the direc-
tions opposite, where the field on the forward side of the
slabisin the — z direction. In addition, a traveling electro-
magnetic wave always has an electric field of magnitude
E = cB in a direction so that EXB (or the Poynting vec-
tor) is in the direction of propagation. This gives an electric
field that is in the opposite direction of the incident pulse,
but in the same direction on both sides of the slab. Superim-
posing these fields then gives the electric field for x >0 at
time >0 as

E, =A[8(x —ct) — (Ne* Ax/2mexc?)®(ct —x) ],
(13)

where ®(x) is the step function with value 0, if x <0, and 1,
ifx > 0, and, for reasons discussed below, the velocity of the
charges has been assumed to be constant after the pulse has
passed.

_The electric field in (13) is, as Maxwell’s equations im-
ply, continuous across the slab and; therefore, the charges
in the slab experience an electric force in the direction op-
posite to their velocity. This damping is also implied by the
fact that energy must be lost from the sheet to account for
the energy being radiated in the tail. In general, considera-
tion of the reaction of the tail of the wave on the slab leads
to -an exponentially decreasing velocity after the initial
pulse has passed the slab. However, if we are interested
only in a thin sheet, in the limit Ax -0, and are calculating
scattered contributions only to first order in Ax, the effect
of damping being proportional to (Ax)?, is negligible. This
approximation is also consistent with the fact that the ener-
gy radiated in the tail, proportional to the square of the
fields, is also of order (Ax)>. Therefore, to first order in Ax
the tail is constant, as represented by (13), and energy con-
servation holds to this order as well.

Any incident waveform can be considered as a superpo-
sition of 8-function pulses and, in particular, so can an os-
cillatory wave of the form given in (8). Suppose that the
electric field of the incident wave is some arbitrary function
f(x — ct). Then, from (13), it follows that the total wave-
form for x>0 is

E, =f(x —ct) — (Ne’ Ax/2mexc?)g(x —ct),  (14)
where g(u) is defined by
g(u) =f SfwhHdu'. (15)

Then, if we want the response to an oscillatory wave
fx—ct) =™~ then f(u)=¢€** and g(u)
= (i/k)e™* [assuming k has a small imaginary part so the
integral in (15) is well defined]. Substituting this result
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into Eq. (14) reproduces the response of the thin slab to an
incident oscillatory wave given in Eq. (10). Note that in
this way of deriving (10) there is no question about viola-
tion of causality or propagation faster than ¢; in each term
in the superposition nothing appears ahead of the §-func-
tion pulse that moves with speed c.

IV. GROUP VELOCITY LARGER THAN ¢

Suppose that it were possible to change the sign of the
second term of Eq. (13), i.e., reverse the sign of the tail, so
that the tail had the same sign as the incident pulse. Be-
cause again nothing appears ahead of the §-function pulse,
this would be consistent with relativity and causality. How-
ever, by superposition, the wave generated by the slab in
response to an oscillatory field (8) would be negative that
given in (10). In particular, the phase change in going
through the slab, given in (9), would be of the opposite
sign. This would imply an index of refraction larger than 1,
a phase velocity less than ¢, and a group velocity greater
than c. Therefore, having a group velocity larger than ¢ is
not ruled out solely by relativity.

Reversal of the sign of the tail would also lead to anti-
damping, i.e., the electrical force on charges in the slab
would be in the direction of their velocity, tending to in-
crease the velocity rather than damping it. If the slab is
sufficiently thin and we are interested only in fields genera-
ted to first order in Ax, the effects of antidamping, as with
damping, will be negligible and the tail will be again con-
stant. However, the presence of antidamping suggests how
a material that has the desired properties could, in princi-
ple, be constructed. It would have to be active, in the sense
that energy must be able to be fed into motion of the
charges.

One way of constructing such a system is to suppose that
at the position of each charge there was an additional infini-
tesimal charge that is used to measure the electric field.
Then for a given value of the field a device computes and
exerts a nonelectrical force on the charge equal to
F, = +2eE, i.e., a force twice as large as the electrical
force but in the opposite direction. Then the net force on
the charge would be reversed in sign and the subsequent
velocities would all be reversed. This would reverse the sign
of the tail, leading to the case described above for an oscilla-
tory wave, namely, an index of refraction greater than 1, a
phase velocity less than ¢, and a group velocity larger than
¢. Yet no violation of relativity has occurred, only the intro-
duction of some bizarre, active system.

It should be noted that the system constructed above is
inherently unstable. If there is some small fluctuation in the
electric field, the net effect is to increase the electric field
and the system runs away. Of course, for the slab of infini-
tesimal thickness, the runaway time goes to infinity. How-
ever, for a finite slab, it would be necessary to suppose that
the charges are absolutely at rest until the incident pulse
arrives in order that the charges in the slab not take off and
generate a spurious electromagnetic wave.

Could such a bizarre material occur naturally? One way
of changing the sign of the response is to change the sign in
the fundamental force law. For example, one way of trans-
forming the equations of electrostatics into the equations of
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Newtonian gravity is to replace ¢ by m and (in SI units) 1/
47e, by — G. If we make this transformation on the disper-
sion relation (1) and (2), we arrive at a dispersion relation
of the form (5), with @2 = — 47GmN, and an index of
refraction # for gravitational waves, given in the dilute ap-
proximation, by

n=1427rGmN /o*. (16)

Of course, the transformation used goes far beyond the
static approximations of electrostatics and Newtonian
gravity, and so the result (16) can only be considered sug-
gestive and in no sense a derivation.

The question naturally arises as to what is the index of
refraction for gravitational waves in a dilute gas and
whether the result agrees with (16). The answer is not easy
to give. A number of calculations”'? employing different
techniques and approximations have given different
answers. In some of these, the dominant contribution to
n — 1 comes from the pressure/c” rather than the much
larger mass density, and with different coefficients, includ-
ing both signs. Others find no deviation of n from 1 to this
order. At least one calculation,'® within the context of lin-
earized general relativity, has given (16). Curiously, it has
been argued®'® that some expressions can be judged to be
incorrect solely on the grounds that they give a group ve-
locity larger than c.

V. CONCLUSIONS

The results of this article can be summarized as follows.
While it is true that the group velocity for plasma waves is
less than ¢, it is not correct to state that such a restriction is
imposed by relativity. This is demonstrated by giving an .
example of an active, albeit unstable, system in which the
group velocity is larger than ¢, but which is consistent with
relativity and causality. Therefore, relativity alone is not
sufficient to rule out group velocities larger than c.
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