* dw
s e L2
X0 dk

where C is a constant that relates the square of the nonoscil-
latory part of the wave amplitude to its time-averaged energy
density. The virial theorem assures us that constant C exists.

The (time-averaged) rate of energy flow across the plane
x=x, is the (time-averaged) energy density there times the
desired velocity of energy flow, vg. This product is just
Cuge ™04 noting the meaning of constant C.

Hence the velocity of energy flow is

dw
UE=E=vgroup'

An objection to this argument would be that it doesn’t apply
if the absorption is too strong (and not if it is too weak as
implied in the statement of Question #52). It may be that the
heroic efforts of Sommerfeld and Brillouin [Ann. Phys.
(1914); see also, for instance, Max Born and Emil Wolf,
Principles of Optics and Léon Brillouin, Wave Propagation
and Group Velocity] to clarify signal propagation in the case
of highly absorptive anomalous dispersion in optical media
(where v gy, exceeds the speed of light) have left the im-
pression that the more ordinary case is similarly intricate.

Kirk T. McDonald

Joseph Henry Laboratories
Department of Physics
Princeton University

P.O. Box 708

Princeton, New Jersey 08544

Answer to Question #52. Group velocity and energy
propagation

K. M. Awati and T. Howes have asked for a general proof
that the energy propagation in a dispersive medium is at the
group, and not the phase, velocity. This is an interesting
issue because it requires a broader understanding of wave
energy than simply the electromagnetic component. It was
originally pointed out by Max von Laue in 1905' that in a
dispersive medium the kinetic energy of the oscillators as
well as the field energy must be considered. The discussion
was subsequently pursued by numerous authors leading to a
general formulation of the total energy of a slightly damped
wave in a dispersive medium, particularly a plasma.z‘7 Most
of these treatments are based only on Maxwell’s equations
with a conductivity introduced to account for the particles.
Without an explicit identification of the particle energy con-
sidered as coherent with the wave, however, the treatment is
incomplete. Allis et al. do identify this energy for a cold
plasma.® I carried out a complete description for a fully ion-
ized hot plasma.® At that time, considerations of this problem
were also being pursued by the group at G&iteborg.9

If one does not ask about the actual identity of the coher-
ent particle energy, to show that the total wave energy must
propagate at the group velocity is fairly straightforward. A
dispersive medium is one in which there is a time damping
and spatial dispersion of an electromagnetic wave. From
Maxwell’s equations it is clear that such a medium must
contain charges and be capable of producing currents. The
presence of these charges is accounted for by introducing a

658 Am. J. Phys., Vol. 66, No. 8, August 1998

conductivity, o. The wave disturbances in such a medium are
those with  time and spatial dependence of the form

Re{f(lz,w)exp[iwt—ilz-r:]}, 1)

where f(k,w) is any of the field or particle quantities of
interest. In an isotropic medium the (complex) conductivity,
o(k,w), is a scalar. The necessary condition for the exis-
tence of such disturbances is

det{ D (k,)} =0, 2
with
B(Ig,w)EI;I;+(w2MOEO—k2)f—iw,u,ocrr. (3)

To be considered as propagating in the medium, these dis-
turbances, Eq. (1), must exist over a large number of wave-
lengths. That is, the imaginary parts of k and w must be
small. If one performs an expansion in small imaginary parts,
the time average of the field energy equation produces

0, U+(—k)[U gradi(w)]=—o,E?, 4)
where
Jo;
U=Uem~~—E 5)

is the total energy of the wave disturbance, and o, and o; are
the real and imaginary parts of the conductivity. In (5) U, is
the electromagnetic energy density in the wave, and the sec-
ond term in U is that identified as the coherent particle ki-
netic energy. The term multiplied by w; in (4) is the time
derivative of the total energy and that involving the scalar

product with k; is the divergence of the flux of total energy.
The right-hand side of (4) then represents the loss rate of this
total energy to the background dispersive medium. This is
the degradation of the coherent particle energy component of
U into (noncoherent) thermal energy.

An important step in obtaining (4) is to consider the form
of the electrical conductivity for the slightly damped wave.
Expanding around the undamped condition, the conductivity
is

- 0 -
olk,w)~(io;)+iw; T (io;)+ik; gradi(io;) to,.
(6)

1t is easy to show that the conductivity must be purely imagi-
nary at the propagation condition.

The form of the flux term in (4) provides an answer to the
question asked. In a dispersive medium, a general (total)
Poynting vector must be considered. This is

S=U grad;(w), (7

where, of course, gradi(w) is the group velocity of the wave.

As satisfying as this is, the door has only been opened a
crack; the real problem is to identify the coherent particle
energy. In Ref. 8 this coherent energy is identified as the
standard hydrodynamic energy, quadratic in the current, plus
a part of the thermal energy related to particle density varia-
tions. An equally interesting question is the origin of the
damping represented by the real part of the complex conduc-
tivity. The form of this term depends on the thermodynamic
state of the background medium. Landau’s classic treatment
of the damping and excitation of Coulomb waves in a Vlasov
plasma is an example.'® Perhaps a more interesting question
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is the application to a semiconductor. I do not believe a
parallel development has been pursued in this case.

I traditionally devote a portion of my course in electricity
and magnetism to these issues. The simple form of the term
on the right-hand side of (4) makes it possible to generate
some interesting examples. Although mine have been a bit
contrived to keep the mathematics transparent, there is, nev-
ertheless, satisfying insight here for the student.
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Answer to Question #52. Group velocity and energy
propagation

The discussion of group velocities v,= dw/dk, by contrast
with phase velocities v,=w/k, of propagating waves as-
sumes three things. (i) The wave does not have a singular
spectrum with just one carrier frequency @, and one wave
number kq. It is actually a wave packet, hence the group
velocity plays a role. (ii) The bandwidth of its spectrum is
not too large (v, well defined). (iii) The dispersion is non-
linear, i.e., @ is not proportional to & for the eigenmodes,
Vg#U,.

Awati and Howes [Am. J. Phys. 64 (11), 1353 (1996)] ask
for a general proof of the relationship between group veloc-
ity and the velocity of energy propagation. Velocities are
conventionally defined by identifying a characteristic point at
some time ¢ and place r, watching as it moves within a time
At to another place r+ Ar, then setting v=Ar/A¢. If the
parameter is the energy density' S(r,), one would, for ex-
ample, associate the motion r(z) of the characteristic point
with a local maximum of the density, 8,5(r,1)=0. The link
between this formula in local space and the dispersion w(k)
is inevitably given by the Fourier transform of this defining
equation,

f d® kdwkS(k,w)exp[i(kr— wt)]=0. 1)
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A relation between Ar and Ar follows, because this equation
must hold for some (r,z) as well as for another (r+Ar,
t+At). For small At and Ar, a part of the integrand may be
expanded up to first order” in Ar and At,

keik(r+ Ar)—iw'(t+At))R,kei(kr—wt)+ ikei(kr—wt)

X (kAr—wAt). (2)

The following argument resembles a mathematical proof via
“‘induction”’ from ¢ to #+ A¢. The integral over the zeroth-
order term is assumed to be already zero. Ar and At are
brought in relation to each other to ensure that the integral
over the linear orders vanishes as well. We may introduce
the central frequency wy and wave number kg,

kAr— wAt=koAr— woAt+ (k—ko)Ar—(w—wg)Ar.

The first two terms on the right-hand side do not depend on
k. Their integrals with the kemnel (2) are consequently zero
by means of (1). This is the crucial reason why we do not
need to have kgAr—woAt=0 and v is not primarily con-
nected with v,. To ensure that the integrals over the third
and fourth terms are also zero, it is best to have (k—kg)Ar
=(w— wg)At, which means Ar/At=(w— wy)/(k—ky), ie.,
v=v,.%?

Thg motion of special wave packet points with the group
velocity rather than with the phase velocity is a mathematical
feature of the Fourier transformation, independent of the
spectral composition S of the wave amplitudes, the particular
dispersion, and which physical quantity waves. Even the fac-
tor k in the Fourier integral (1), representing the gradient and
maximum property in local space, is subordinate and may be
replaced by more general functions.

1...a product of two local quantities, as in the case of the Poynting vector, or
an (auto)correlation function in cases where the energy is a product of
wave functions in (k,w)-space, or something more general.

2An inexact justification is that the velocity is to be determined in the limit
of Ar,At—0.

3Provided that the spectral width of S(k,w) is small enough that the de-
rivative dw/dk can be well approximated by the quotient of the differ-
ences.

1t v, is constant in the region of nonzero S(k,w), this is valid for all
orders in A7 and A¢, as the analysis can be performed within the argument
of the exponential function (principle of the ‘‘stationary phase’’), even if
the factor k in the integrand is replaced be any function of k and w. This
property is useful, if, by some accidental characteristic of S(k,w), the
integral over the linear term vanishes for any pair of Ar and Az, and
vanishing of the first orders provides no information.

SDamped waves are generally described by complex valued dispersions
w(k) for the eigenmodes but real valued v,=0d Re w/dk. The Fourier in-
tegral is also defined for paths over the real k and w axes.
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Answer to Question #52. Group velocity and energy
propagation

The question by K. M. Awati and T. Howes [Am. J. Phys.
64 (11), 1353 (1996)] seeks a general proof showing that
wave energy propagates at the group velocity rather than the
phase velocity. No such proof exists because the result is not
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