Pricing Tactics: Two-part Tariff and Peak-Load Pricing

Chapter 13. Menu pricing

Slides Reference:

Industrial Organization: Markets and Strategies

Chapter 13. Learning objectives

- Be able to make a clear difference between twopart tariff, menu pricing and peak-load pricing.
- Understand how a monopolist sets above prices and under which conditions such pricing strategies lead to higher profits than uniform pricing.

Two-part Tariff vs Uniform Pricing

- Uniform Pricing
 - All consumers pay same price
 - A monopoly how to set price, given demand p=a-bq
 - Can monopoly gain higher profit?
- Two-part Tariff
 - Price include fixed part+variable part (depends on q)
 - Real-life example
 - Why firm uses two-part tariff?
 - How to implement two-part tariff?

Chapter 13 – Two-Part Tariff

Two-part Tariff

Two-part Tariff

- Consumer utility: $U \equiv m + 2\sqrt{Q}$. (13.2)
- Budget constraint: $m+\phi+pQ \le I$. (13.1)
- $\bigoplus_{Q} \max_{Q} U = I \phi pQ + 2\sqrt{Q} \tag{13.3}$
- Derived demand: $p = \frac{1}{\sqrt{Q^d}}$, i.e. $Q^d = \frac{1}{p^2}$. (13.4)
- Firm's uniform pricing: K, capacity constraint

$$\pi \equiv pQ = \frac{1}{\sqrt{Q}}Q = \sqrt{Q}.$$
 (13.5)

$$p_1 = \frac{1}{\sqrt{K}}$$
, and $Q_1 = K$, and hence $\pi_1 = \sqrt{K}$.

• Firm charges fixed fee only:

$$\max_{\phi} \pi(\phi) = \phi \text{ s.t. } I - \phi + 2\sqrt{K} \ge I = U_0,$$
 (13.6)

$$\pi_2 \equiv \pi(\phi = \phi_2, p = 0) = 2\sqrt{K} > \sqrt{K} = \pi(\phi = 0, p = 1/\sqrt{K}) = \pi_1.$$

Two-part Tariff vs Uniform Pricing

Menu vs. group pricing

- Group (and personalized) pricing
 - Seller can infer consumers' willingness to pay from observable and verifiable characteristic (e.g., age)
- Menu pricing
 - Willingness to pay = private information
 - Seller must bring consumer to reveal this information.
 - How?
 - Identify product dimension valued differently by consumers
 - Design several versions of the product along that dimension
 - Price versions to induce consumers' self-selection
 - → **Menu pricing** (a.k.a. versioning, 2nd-degree price discrimination, nonlinear pricing)
 - → Screening problem: uninformed party brings informed parties to reveal their private information

Case. Menu pricing in the information economy

- Versioning based on quality
 - 'Nagware': software distributed freely but displaying ads or screen encouraging users to buy full version
 - → annoyance = discriminating device
- Versioning based on time
 - Books: first in hardcover, later in paperback
 - Movies: first in theaters, next on DVD, finally on TV.
 - → price decreases as delay increases
- Versioning based on quantity
 - Software site licenses
 - Newspaper subscription
 - → quantity discounts

Ven Cao

Monopoly menu pricing

- Quantity-dependent prices (same product)
 - Suppose 2 types of consumers
 - 'household', pH = 12-2qH
 - 'business', *PB* = 6-*qB*/2
 - Monopoly price decision for two markets:

$$MR_{H}(Q_{H}) = MC(Q_{H} + Q_{B}) = MR_{B}(Q_{B}) = 0$$

 $pH = 6$, $qH = 3$ and
 $pB = 3$, $qB = 6$
 $profit = 3*6+6*3-0=36$

Difficulty of implementing this pricing strategy:
 price comparison, purchase in different market,
 arbitrage, anti-trust law

Monopoly menu pricing

- CSH(6)=(6*3)/2=9=CSB(3)
- regular rate program: P=6
 quantity discount program: P=3, for q>=9. (package price of 27, include 9 phone calls, after that p=3/each)
- CSH(discount)=12*6/2-3*9=9(in different) CSB(discount)=(6-1.5)*9/2+1.5*9-3*9=6.75>0 (but <9) profit= 6*3+27=45>36

Monopoly menu pricing (cont'd)

- Quality-dependent prices: a numerical example
 - Monopolist produces software in 2 versions:
 - Basic version and Pro version (higher quality, with advanced computing functionalities); $c_{basic}=c_{pro}=0$
 - 120 potential consumers
 - \square λ universities (high type) and 120λ businesses (low type)
 - Willingness to pay:

	Universities	Businesses
Pro	9	3
Basic	5	2

• Single-crossing: $U(\theta_2, s_2) - U(\theta_2, s_1) = 4 > U(\theta_1, s_2) - U(\theta_1, s_1) = 1$

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)
 - Optimal uniform pricing
 - Sell Pro version.
 - Either at $p_{pro} = 9 \rightarrow q_{pro} = \lambda \& \pi^{uni} = 9\lambda$
 - Or at $p_{pro} = 3 \rightarrow q_{pro} = 120 \& \pi^{uni} = 360$
 - So, $\pi^{uni} = \max\{9\lambda, 360\}$
 - If seller can tell universities and businesses apart → personalized pricing
 - Sell Pro version at $p_{pro} = 9$ to universities and at $p_{pro} = 3$ to businesses $\rightarrow \pi^{pers} = 9\lambda + 3(120 \lambda) = 360 + 6\lambda$
 - If seller cannot tell universities and businesses apart
 → menu pricing
 - Use the 2 versions to induce self-selection: sell Pro version to universities and Basic version to businesses
 - Problem: find incentive compatible prices

$\begin{array}{c|cccc} & \text{Universities} & \text{Businesses} \\ \lambda & & 120-\lambda \\ \hline \text{Pro} & \textbf{9} & \textbf{3} \\ \hline \text{Basic} & \textbf{5} & \textbf{2} \\ \end{array}$

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)
 - Let's find menu prices by trial and error
 - 1st trial: charge each group its reservation price
 - $p_{pro} = 9$ and $p_{basic} = 2$
 - Problem: universities prefer Basic version as it yields larger surplus: 9 - 9 < 5 - 2 → self-selection is not achieved
 - Self-selection (or incentive compatibility) constraint: price difference \leq premium universities are willing to pay for upgrading to the Pro version: $p_{pro} p_{basic} \leq 9 5 = 4$
 - 2nd trial: charge universities their reservation price and compute incentive compatible price of Basic version
 - $p_{pro} = 9$ and $p_{basic} = 9 4 = 5$
 - Problem: businesses don't buy!
 - Participation constraint: price of Basic version ≤ businesses' reservation price: p_{basic} ≤ 2

$\begin{array}{c|cccc} & \text{Universities} & \text{Businesses} \\ \lambda & & 120-\lambda \\ \hline \text{Pro} & \textbf{9} & \textbf{3} \\ \hline \text{Basic} & \textbf{5} & \textbf{2} \\ \end{array}$

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)
 - Optimum
 - Combining the 2 constraints: $p_{basic} = 2$ and $p_{pro} = 2 + 4 = 6$
 - Profits: $\pi^{menu} = 6\lambda + 2(120 \lambda) = 240 + 4\lambda$
 - Menu vs. group pricing
 - Lower profits under menu pricing: $\pi^{menu} \pi^{pers}$ = $-(120 + 2\lambda) < 0$
 - Inducing self-selection induces two types of losses:
 - ✓ Businesses are offered a low-quality product instead of a high-quality one \rightarrow loss: $(120 \lambda)(2-3) = -(120 \lambda)$
 - ✓ Universities are sold the high-quality product at a discount; they are left with an 'information rent' \rightarrow loss: $\lambda(6-9) = -3\lambda$
 - ✓ Total loss: $-(120 \lambda) 3\lambda = -(120 + 2\lambda)$

Monopoly menu pricing: summary

Lesson: Consider a monopolist who offers 2 pairs of price and quality to 2 types of consumers. Prices are chosen so as to fully appropriate low-type's consumer surplus. High-type consumers obtain a positive surplus ('information rent') as they can always choose the low-quality instead.

Wen Cao

$\begin{array}{c|cccc} & \text{Universities} & \text{Businesses} \\ \lambda & & 120-\lambda \\ \hline \text{Pro} & \textbf{9} & \textbf{3} \\ \hline \text{Basic} & \textbf{5} & \textbf{2} \\ \end{array}$

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)
 - Menu vs. uniform pricing
 - Menu pricing may improve profits.
 - Scenario 1: $\lambda > 40 \rightarrow$ firm only sells to universities under uniform pricing $\rightarrow \pi^{uni} = 9\lambda$
 - ✓ Cannibalization: universities now pay less for Pro version → loss of $\lambda(6-9) = -3\lambda$
 - ✓ Market expansion: businesses now buy Basic version → gain of $(120 - \lambda)2$
 - ✓ Net gain if $-3\lambda + (120 \lambda)2 > 0 \Leftrightarrow \lambda < 48$
 - ✓ If so, menu pricing also increases welfare (firm and universities strictly better off; businesses as well off)

$\begin{array}{c|cccc} & \text{Universities} & \text{Businesses} \\ \lambda & & 120-\lambda \\ \hline \text{Pro} & \textbf{9} & \textbf{3} \\ \hline \text{Basic} & \textbf{5} & \textbf{2} \\ \end{array}$

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)
 - Menu vs. uniform pricing (cont'd)
 - Scenario 2: $\lambda < 40 \rightarrow$ firm sells to everyone under uniform pricing $\rightarrow \pi^{uni} = 360$
 - ✓ No market expansion in this case, but 2 opposite effects.
 - ✓ Businesses buy Basic instead of Pro version → loss of $(120 - \lambda)(2-3)$
 - ✓ Universities pay more for Pro version \rightarrow gain of $\lambda(6-3)$
 - ✓ Net gain if $-(120 \lambda) + 3\lambda > 0 \Leftrightarrow \lambda > 30$
 - ✓ If so, menu pricing reduces welfare (firm better off, but universities worse off; businesses as well off)

Monopoly menu pricing: summary

- Lesson: Menu pricing is optimal (i) if proportion of high-type consumers is neither too small nor too large, and (ii) if going from low to high quality increases surplus proportionally more for high-type consumers than for low-type consumers.
- Lesson: Menu pricing improves welfare if selling the low quality leads to an expansion of the market; otherwise, menu pricing deteriorates welfare.

en Cao

Review questions

- Suppose a firm can target two groups of consumers by a menu of prices with different qualities/quantity, but that it can also offer different prices to different consumer groups.
 What should it do?
- When does menu pricing dominate uniform pricing in monopoly? Discuss the countervailing effects.

Peak Load Pricing

- The practice of firm charge different prices for different time/period
 - Demand varies between periods.
 - Capacity can't be adjusted immediately.
 - Firm's output can't be stored.

• Real Life Example?

Profit-maximizing seasonal airfare structure

$$MR^H(Q^H)=c+r$$
 and $MR^L(Q^L)=c,$ where $Q^H>Q^L;$ and $p^H=rac{A^H+c+r}{2}>rac{A^L+c}{2}=p^L.$

If investment in capacity can be used over next n years, then

$$MR^H(Q^H) = c + r/n$$
 and $MR^L(Q^L) = c$.

 Limitation: does not consider the demand substituting between high and low periods

Can Firms "Control" the Seasons?

• Let us consider a continuum of consumers indexed and uniformly distributed on the closed interval [a, b], where and b > 1. We denote by δ a particular consumer indexed on [a, b]. The utility of consumer δ , , is assumed to be given by

$$U^{\delta} \equiv \begin{cases} \beta \delta - p_{D} & \text{if she buys a day service} \\ \beta - p_{N} & \text{if she buys a night service} \\ 0 & \text{if she does not buy any service} \end{cases}$$
(13.9)

- Day service and night service arc said to be
 - 1. vertically differentiated if, given equal prices (PD = PN), all consumers choose to purchase only the day service; [a>=1]
 - 2. horizontally differentiated if, given equal prices (PD = PN), consumers indexed by a high δ choose to purchase the day service whereas consumers indexed by a low δ choose to purchase the night service.

$$[0 <= a < 1]$$

Monopoly's cost structure

$$TC(\hat{\delta}) = r \max\{\hat{\delta} - a, b - \hat{\delta}\} + \hat{\delta}c_N + (1 - \hat{\delta})c_D. \tag{13.11}$$

demand for night and day can be switched.

r>|cD-cN|

$$MC(\hat{\delta}) = \begin{cases} -r + c_N - c_D & \text{if } \hat{\delta} < (a+b)/2 \\ +r + c_N - c_D & \text{if } \hat{\delta} > (a+b)/2. \end{cases}$$
(13.12)

$$TR(\hat{\delta}) \equiv p_N n_N + p_D n_D = \beta(\hat{\delta} - a) + \beta \hat{\delta}(b - \hat{\delta}). \tag{13.13}$$

$$MR(\hat{\delta}) = \beta(1+b) - 2\beta\delta. \tag{13.14}$$

Monopoly's profit:

vertical differentiation: horizontal differentiation:

$$\hat{\delta} = \min \left\{ \frac{\beta(1+b) - r + c_D - c_N}{2\beta}; \frac{a+b}{2} \right\}, \text{ and}$$

$$\hat{\delta} = \max \left\{ \frac{\beta(1+b) + r + c_D - c_N}{2\beta}; \frac{a+b}{2} \right\}.$$