Pricing Tactics : Two-part Tariff and Peak-Load Pricing

Chapter 13. Menu pricing

Chapter 13. Learning objectives

- Be able to make a clear difference between twopart tariff, menu pricing and peak-load pricing.
- Understand how a monopolist sets above prices and under which conditions such pricing strategies lead to higher profits than uniform pricing.

Two-part Tariff vs Uniform Pricing
 - Uniform Pricing

- All consumers pay same price
- A monopoly how to set price, given demand $p=a-b q$
- Can monopoly gain higher profit?
- Two-part Tariff
- Price include fixed part+variable part (depends on q)
- Real-life example
- Why firm uses two-part tariff?
- How to implement two-part tariff?

Two-part Tariff
 - Two-part Tariff

- Consumer utility: $\quad v \equiv m+2 \sqrt{q}$.
- Budget constraint: ${ }^{m+\phi+p Q \leq L}$.
- $\max _{Q} U=I-\phi-p Q+2 \sqrt{Q}$
(13.3)
- Derived demand: $p=\frac{1}{\sqrt{a^{4}}}$ is $\alpha^{\alpha}=\frac{1}{p^{*}}$
- Firm's uniform pricing: K, capacity constraint

$$
\begin{align*}
& \pi \equiv p Q=\frac{1}{\sqrt{Q}} Q=\sqrt{Q} \tag{13.5}\\
& p_{1}=\frac{1}{\sqrt{K}}, \text { and } Q_{1}=K, \text { and hence } \pi_{1}=\sqrt{K}
\end{align*}
$$

- Firm charges fixed fee only:

$$
\begin{aligned}
& \max _{\phi} \pi(\phi)=\phi \text { s.t. } I-\phi+2 \sqrt{K} \geq I=U_{0}, \\
& \pi_{2} \equiv \pi\left(\phi=\phi_{2}, p=0\right)=2 \sqrt{K}>\sqrt{K}=\pi(\phi=0, p=1 / \sqrt{K})=\pi_{1} . \\
& \text { ○ Wen Cao }
\end{aligned}
$$

Two-part Tariff vs Uniform Pricing

\bigcirc

Menu vs. group pricing

- Group (and personalized) pricing
- Seller can infer consumers' willingness to pay from observable and verifiable characteristic (e.g., age)
- Menu pricing
- Willingness to pay = private information
- Seller must bring consumer to reveal this information.
- How?
- Identify product dimension valued differently by consumers
- Design several versions of the product along that dimension
- Price versions to induce consumers' self-selection
\rightarrow Menu pricing (a.k.a. versioning, $2^{\text {nd }}$-degree price discrimination, nonlinear pricing)
\rightarrow Screening problem: uninformed party brings informed parties to reveal their private information

Case. Menu pricing in the information economy

- Versioning based on quality
- 'Nagware': software distributed freely but displaying ads or screen encouraging users to buy full version \rightarrow annoyance = discriminating device
- Versioning based on time
- Books: first in hardcover, later in paperback
- Movies: first in theaters, next on DVD, finally on TV. \rightarrow price decreases as delay increases
- Versioning based on quantity
- Software site licenses
- Newspaper subscription \rightarrow quantity discounts

Monopoly menu pricing

- Quantity-dependent prices (same product)
- Suppose 2 types of consumers
- 'household', $\mathrm{pH}=12-2 q H$
- 'business', $P B=6-q B / 2$
- Monopoly price decision for two markets:

$$
\begin{aligned}
& M R_{\star}\left(Q_{r}\right)=M C\left(Q_{H}+Q_{s}\right)=M R_{s}\left(Q_{s}\right)=0 \\
& p H=6, q H=3 \text { and } \\
& p B=3, q B=6 \\
& \quad \text { profit }=3^{*} 6+6 * 3-0=36
\end{aligned}
$$

- Difficulty of implementing this pricing strategy: price comparison, purchase in different market, arbitrage, anti-trust lawe

Monopoly menu pricing

-

- $\operatorname{CSH}(6)=(6 * 3) / 2=9=\operatorname{CSB}(3)$
- regular rate program: $\mathrm{P}=6$ quantity discount program: $\mathrm{P}=3$, for $\mathrm{q}>=9$. (package price of 27 , include 9 phone calls, after that $p=3 /$ each)
- $\quad \mathrm{CSH}$ (discount) $=12^{*} 6 / 2-3^{*} 9=9$ (in different) CSB(discount) $=(6-1.5)^{*} 9 / 2+1.5 * 9-3 * 9=6.75>0$ (but <9) profit $=6 * 3+27=45>36$

Monopoly menu pricing (cont'd)

- Quality-dependent prices: a numerical example
- Monopolist produces software in 2 versions:
- Basic version and Pro version (higher quality, with advanced computing functionalities); $c_{\text {basic }}=c_{\text {pro }}=0$
- 120 potential consumers
$\square \lambda$ universities (high type) and $120-\lambda$ businesses (low type)
- Willingness to pay:

	Universities	Businesses
Pro	9	3
Basic	5	2

- Single-crossing: $U\left(\theta_{2}, s_{2}\right)-U\left(\theta_{2}, s_{1}\right)=4>U\left(\theta_{1}, s_{2}\right)-U\left(\theta_{1}, s_{1}\right)$ $=1$

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)

	Universities λ	Businesses $120-\lambda$
Pro	9	3
Basic	5	2

- Optimal uniform pricing
- Sell Pro version.
- Either at $p_{p r o}=9 \rightarrow q_{p r o}=\lambda \& \pi^{u n i}=9 \lambda$
- Or at $p_{\text {pro }}=3 \rightarrow q_{\text {pro }}=120 \& \pi^{u n i}=360$
- So, $\pi^{u n i}=\max \{9 \lambda, 360\}$
- If seller can tell universities and businesses apart \rightarrow personalized pricing
- Sell Pro version at $p_{\text {pro }}=9$ to universities and at $p_{\text {pro }}=3$ to businesses $\rightarrow \pi^{\text {pers }}=9 \lambda+3(120-\lambda)=360+6 \lambda$
- If seller cannot tell universities and businesses apart \rightarrow menu pricing
- Use the 2 versions to induce self-selection: sell Pro version to universities and Basic version to businesses
- Problem: find incentive compatible prices

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)

	Universities λ	Businesses $120-\lambda$
Pro	9	3
Basic	5	2

- Let's find menu prices by trial and error
- $1^{\text {st }}$ trial: charge each group its reservation price
- $p_{\text {pro }}=9$ and $p_{\text {basic }}=2$
- Problem: universities prefer Basic version as it yields larger surplus: $9-9<5-2 \rightarrow$ self-selection is not achieved
- Self-selection (or incentive compatibility) constraint: price difference \leq premium universities are willing to pay for upgrading to the Pro version: $p_{\text {pro }}-p_{\text {basic }} \leq 9-5=4$
- 2nd trial: charge universities their reservation price and compute incentive compatible price of Basic version
- $p_{\text {pro }}=9$ and $p_{\text {basic }}=9-4=5$
- Problem: businesses don't buy!
- Participation constraint: price of Basic version \leq businesses' reservation price: $p_{\text {basic }} \leq 2$

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)

	Universities λ	Businesses $120-\lambda$
Pro	9	3
Basic	5	2

- Optimum
- Combining the 2 constraints: $p_{\text {basic }}=2$ and $p_{\text {pro }}=2+4=6$
- Profits: $\pi^{\text {menu }}=6 \lambda+2(120-\lambda)=240+4 \lambda$
- Menu vs. group pricing
- Lower profits under menu pricing: $\pi^{\text {menu }}-\pi^{\text {pers }}$ $=-(120+2 \lambda)<0$
- Inducing self-selection induces two types of losses:
\checkmark Businesses are offered a low-quality product instead of a high-quality one \rightarrow loss: $(120-\lambda)(2-3)=-(120-\lambda)$
\checkmark Universities are sold the high-quality product at a discount; they are left with an 'information rent' \rightarrow loss: $\lambda(6-9)=-3 \lambda$
\checkmark Total loss: $-(120-\lambda)-3 \lambda=-(120+2 \lambda)$

Monopoly menu pricing: summary

- Lesson: Consider a monopolist who offers 2 pairs of price and quality to 2 types of consumers. Prices are chosen so as to fully appropriate lowtype's consumer surplus. High-type consumers obtain a positive surplus ('information rent') as they can always choose the low-quality instead.

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)

	Universities λ	Businesses $120-\lambda$
Pro	9	3
Basic	5	2

- Menu vs. uniform pricing
- Menu pricing may improve profits.
- Scenario 1: $\lambda>40 \rightarrow$ firm only sells to universities under uniform pricing $\rightarrow \pi^{u n i}=9 \lambda$
\checkmark Cannibalization: universities now pay less for Pro version \rightarrow loss of $\lambda(6-9)=-3 \lambda$
\checkmark Market expansion: businesses now buy Basic version \rightarrow gain of (120- λ)2
\checkmark Net gain if $-3 \lambda+(120-\lambda) 2>0 \Leftrightarrow \lambda<48$
\checkmark If so, menu pricing also increases welfare (firm and universities strictly better off; businesses as well off)

Monopoly menu pricing (cont'd)

- A numerical example (cont'd)

	Universities λ	Businesses $120-\lambda$
Pro	9	3
Basic	5	2

- Menu vs. uniform pricing (cont'd)
- Scenario 2: $\lambda<40 \rightarrow$ firm sells to everyone under uniform pricing $\rightarrow \pi^{u n i}=360$
\checkmark No market expansion in this case, but 2 opposite effects.
\checkmark Businesses buy Basic instead of Pro version
\rightarrow loss of $(120-\lambda)(2-3)$
\checkmark Universities pay more for Pro version \rightarrow gain of $\lambda(6-3)$
\checkmark Net gain if $-(120-\lambda)+3 \lambda>0 \Leftrightarrow \lambda>30$
\checkmark If so, menu pricing reduces welfare (firm better off, but universities worse off; businesses as well off)

Monopoly menu pricing: summary

- Lesson: Menu pricing is optimal (i) if proportion of high-type consumers is neither too small nor too large, and (ii) if going from low to high quality increases surplus proportionally more for hightype consumers than for low-type consumers.
- Lesson: Menu pricing improves welfare if selling the low quality leads to an expansion of the market; otherwise, menu pricing deteriorates welfare.

Review questions

- Suppose a firm can target two groups of consumers by a menu of prices with different qualities/quantity, but that it can also offer different prices to different consumer groups. What should it do?
- When does menu pricing dominate uniform pricing in monopoly? Discuss the countervailing effects.

Peak Load Pricing

- The practice of firm charge different prices for different time/period
- Demand varies between periods.
- Capacity can't be adjusted immediately.
- Firm's output can't be stored.
- Real Life Example?

Profit-maximizing seasonal airfare structure

-

- $M R^{H}\left(Q^{H}\right)=c+r$ and $M R^{L}\left(Q^{L}\right)=c$, where $Q^{H}>Q^{L}$; and

$$
p^{H}=\frac{A^{H}+c+r}{2}>\frac{A^{L}+c}{2}=p^{L} .
$$

- If investment in capacity can be used over next n years, then

$$
M R^{H}\left(Q^{H}\right)=c+\tau / n \text { and } M R^{L}\left(Q^{L}\right)=c \text {. }
$$

- Limitation: does not consider the demand substituting between high and low periods

Can Firms "Control" the Seasons?

- Let us consider a continuum of consumers indexed and uniformly distributed on the closed interval $[a, b]$, where and $b>1$. We denote by δ a particular consumer indexed on $[a, b]$. The utility of consumer δ, , is assumed to be given by

$$
U^{\delta} \equiv \begin{cases}\beta \delta-p_{D} & \text { if she buys a day service } \tag{13.9}\\ \beta-p_{N} & \text { if she buys a night service } \\ 0 & \text { if she does not buy any service }\end{cases}
$$

- Day service and night service arc said to be

1. vertically differentiated if, given equal prices ($P D=P N$), all consumers choose to purchase only the day service; [a>=1]
2. horizontally differentiated if, given equal prices $(P D=P N)$, consumers indexed by a high δ choose to purchase the day service whereas consumers indexed by a low δ choose to purchase the night service.

$$
[0<=a<1]
$$

Monopoly's cost structure

$$
T C(\hat{\delta})=r \max \{\hat{\delta}-a, b-\delta\}+\hat{\delta}_{N}+(1-\hat{\delta}) c_{D}
$$

demand for night and day can be switched.

$$
M C(\hat{\delta})= \begin{cases}-r+c_{N}-c_{D} & \text { if } \hat{\delta}<(a+b) / 2 \\ +r+c_{N}-c_{D} & \text { if } \hat{\delta}>(a+b) / 2 .\end{cases}
$$

(13.12)

$$
\begin{equation*}
T R(\hat{\delta}) \equiv p_{N} n_{N}+p_{D} n_{D}=\beta(\hat{\delta}-a)+\beta \hat{\delta}(b-\hat{\delta}) . \tag{13.13}
\end{equation*}
$$

$M R(\hat{\delta})=\beta(1+b)-2 \beta \delta$.
(13.14)
$r>|c D-c N|$

Monopoly's profit:

- vertical differentiation: $\hat{\delta}=\min \left\{\frac{\beta(1+b)-r+c_{D}-c_{N}}{2 \beta} ; \frac{a+b}{2}\right\}$, and horizontal differentiation: $\quad \hat{\delta}=\max \left\{\frac{\beta(1+b)+r+c_{D}-c_{N}}{2 \beta} ; \frac{a+b}{2}\right\}$.

