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Summary

� Proteins often function as complexes, yet little is known about the evolution of dissimilar su-

bunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes,

with distinct eukaryotic types for different classes of transcripts. In addition to Pol I–III, com-

mon in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits

are specific to one type, whereas other subunits are shared by multiple types.
� We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP

gene duplication events in land plant history, thereby reconstructing the subunit compositions

of the novel RNAPs during land plant evolution.
� We found that Pol IV/V have experienced step-wise duplication and diversification of vari-

ous subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplica-

tions have further increased RNAP complexity with distinct copies in different plant families

and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol

IV/V probably originated from a gene fusion in the ancestral land plants.
� We propose a framework of plant RNAP evolution, providing an excellent model for protein

complex evolution.

Introduction

Most proteins accomplish their functions through interaction
networks or as subunits in protein complexes. The BioGRID
(3.2.120) database records 6439, 7184 and 19 746 proteins that
interact physically with other proteins as supported experimen-
tally in yeast, Arabidopsis and humans, respectively (http://
wiki.thebiogrid.org/doku.php/statistics). Protein complexes have
many essential cellular functions, such as DNA polymerases in
replication (Kelman & O’Donnell, 1995), RNA polymerases
(RNAPs) and the mediator complex in transcription and its regu-
lation (Kelleher et al., 1990; Cramer et al., 2001), ribosome and
proteasome in protein synthesis and degradation (Ben-Shem
et al., 2011; Beck et al., 2012), ATP synthase in energy metabo-
lism (Boyer, 1997) and the G protein complex in signaling
(Neer, 1995), just to name a few.

Gene duplication is a major mechanism for increasing network
complexity (Force et al., 1999; Innan & Kondrashov, 2010;
Baker et al., 2013). Although many duplicates (paralogs) are lost
after duplications, some undergo subfunctionalization, with par-
tial retention of ancestral functions, whereas others are main-
tained after neofunctionalization (acquisition of new functions)
(Lynch & Conery, 2000; Moore & Purugganan, 2005).

Duplication patterns in individual gene families have been inves-
tigated extensively (Nei & Rooney, 2005; Lin et al., 2006, 2007;
Nei et al., 2008; Zhou & Ma, 2008; Xu et al., 2009), but studies
of genes encoding nonhomologous subunits of complexes are
very limited. For example, it is unclear whether genes encoding
subunits of a complex are duplicated and retained at nearly the
same time to achieve functional diversification. Alternatively,
genes for different subunits might duplicate at different evolu-
tionary times, highlighting step-wise or progressive functional
evolution. Therefore, it is important to examine the evolutionary
histories of members of the same complex to gain insights into
similarities and differences between subunits of complexes and
their potential functional impact.

DNA-directed RNAPs are complex molecular machines for
the essential function of the synthesis of RNA from DNA tem-
plates (Fig. 1a). All eukaryotes examined so far have three types
of nuclear RNAP: Pol I, II and III for rRNA, mRNAs and non-
coding RNAs, and tRNAs and 5S RNAs, respectively (Roeder &
Rutter, 1969; Vannini & Cramer, 2012). Recently, two addi-
tional RNAPs (Pol IV and Pol V) have been reported in plants
(Arabidopsis and maize); they are important for epigenetic regu-
lations, such as small interfering RNA (siRNA)-directed DNA
methylation (RdDM) and gene silencing (Onodera et al., 2005;
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Erhard et al., 2009; Haag & Pikaard, 2011). In Arabidopsis, Pol
IV is required for siRNA biogenesis; Pol V transcribes scaffold
RNA, thereby recruiting the silencing complex (Haag & Pik-
aard, 2011; Pikaard et al., 2012). In maize, Pol IV is also impor-
tant for the regulation of development and paramutations
(Erhard et al., 2009, 2013; Pikaard & Tucker, 2009; Stonaker
et al., 2009).

Eukaryotic RNAPs consist of 12–17 subunits of varying
sequences and sizes (12 of the subunits are illustrated in
Fig. 1a). Structural studies have revealed that the Saccharomyces
cerevisiae (yeast) Pol I, II and III have similar structures, with a

10-subunit core and two to seven peripheral components
(Cramer et al., 2008). By convention, the subunits are named
using ‘RP’ for RNAP, ‘A’, ‘B’ and ‘C’ for Pol I, II and III,
respectively, and a number (starting from the largest) for the
specific subunit; for example, RPA1 is the 1st (largest) subunit
for Pol I. Most yeast Pol II subunits are essential for cell viabil-
ity, except for the 4th (RPB4) and 9th (RPB9) subunits (Archa-
mbault & Friesen, 1993; Hull et al., 1995; Sampath & Sadhale,
2005). Within the conserved core, five subunits (1st, 2nd, 3rd,
9th, 11th) are each encoded by a multigene family, having spe-
cific paralogs for Pol I, II and III, respectively (Cramer et al.,
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Fig. 1 Features of RNA polymerase (RNAP) subunits in Arabidopsis and other representative species. (a) Subunit compositions of RNAPs in Arabidopsis.
The compositions of Pol II, IV and V subunits were from previous biochemical studies (Huang et al., 2009; Ream et al., 2009; Law et al., 2011). Pol I and
Pol III subunits are classified according to gene annotations of the Arabidopsis genome. The 4th subunits of Pol I and III are shown with dashed outlines to
indicate the lack of recognized Arabidopsis genes. (b) Copy numbers of eukaryotic RNAP genes. A darker color indicates a higher copy number. †, Only
numbers for the Pol II and Pol III 4th subunits are shown. For animals, the putative counterparts of Pol I 4th subunits are indicated by a question mark. The
yeast Pol I, II and III 4th subunits are RPA14, RPB4 and RPC17, respectively (Cramer et al., 2008). RPC17 shares with RPB4 an RNA_pol_Rpb4 domain
(PF03874 in the Pfam database) and has a human homolog (CRCP; ENSG00000241258). However, RPA14 has no detectable amino acid sequence
similarity to RPB4 or detectable homologs in animals. *, Only numbers for the Pol II and Pol IV/V 4th subunits are shown. For plants, the putative homologs
of Pol I and Pol III 4th subunits are indicated by a question mark. Arabidopsis has two putative homologs of RPC17 with c. 53% similarity for c. 40% of the
amino acid sequences with high E values (0.003 and 0.007; much higher than the 10�5 threshold), but no detectable homologs of RPA14.
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2008), and probably with distinct functions for each type of
RNAP, such as template recognition. Each of five other subun-
its is shared by all three types of RNAP and encoded by a single
gene, with names RPB5, RPB6, RPB8, RPB10 and RPB12,
respectively (as for Pol II) (Cramer et al., 2008; Vannini &
Cramer, 2012), probably with the same functions for all three
RNAP types.

Unlike animals and fungi, plants have multiple genes for nearly
all subunits (Luo & Hall, 2007; Tucker et al., 2011). In
Arabidopsis, the names of RNAP subunits start with an ‘N’ for
nuclear RNAPs; it has been established biochemically that Pol II,
IV and V each have a similar 12-subunit structure and share the
3rd, 6th, 8th, 9th, 10th, 11th and 12th subunits (Ream et al., 2009)
(Supporting Information Table S1). Pol IV and V have several su-
bunits distinct from the Pol II counterparts: different Pol IV and
Pol V 1st subunits; the 2nd (NRPD2), 4th (NRPD4) and 7th

(NRPE7) subunits are shared by Pol IV and V, but different from
Pol II, and an additional 7th subunit (NRPD7) for Pol IV; Pol II
and IV share one copy of the 5th subunit, but both Pol IV and
Pol V have their specific 5th subunit, respectively; and in addition
to the shared 3rd subunit (NRPB3) between Pol II, IV and V, Pol
IV and Pol V also have another copy (NRPE3B). Arabidopsis
mutants defective for one of several Pol I, II and III subunits (e.g.
nrpa2, nrpb2, nrpc2) showed female gametophyte lethality (Ono-
dera et al., 2008). By contrast, mutants defective in the largest su-
bunits of Pol IV and V (NRPD1 and NRPE1) were viable, but
flowered late under short-day conditions (Onodera et al., 2005;
Lahmy et al., 2009; Ream et al., 2009).

Previously, analyses of genes from a small number of plant
species have suggested that the common ancestral gene for the
Pol IV/V 1st subunit probably originated before the divergence
of land plants (Luo & Hall, 2007; Tucker et al., 2011), but when
the Pol IV and V 1st subunits diverged is unclear. The genes for
the 4th and 5th subunits of Pol IV/V experienced duplication
after seed plants diverged from moss (Tucker et al., 2011),
but whether the duplication was before or after the divergence
of angiosperms and gymnosperms is not clear. In addition,
some plant RNAP subunit genes show additional duplications
resulting in new combination types (Luo & Hall, 2007; Lahmy
et al., 2009; Pikaard & Tucker, 2009; Ream et al., 2009; Tucker
et al., 2011). However, there has been no systematic analysis of
the evolution of all 12 subunits for Pol II, IV and V during land
plant history.

To systematically investigate the origins, duplication and loss
patterns, and sequence divergence of RNAP genes in eukaryotes
and, particularly, in land plants, we obtained 2228 sequences
from 58 eukaryotes and performed comprehensive phylogenetic
studies of RNAP genes in representative eukaryotes and major
lineages of land plants. Our analyses of the plant RNAP genes
provide a comprehensive evolutionary portrait of the conserva-
tion and divergence of all 12 subunits, indicating that RNAPs
progressively acquired different new functions in evolution by
having new genes for various subunits in Pol IV and V at differ-
ent times. In addition, different angiosperm groups experienced
lineage-specific duplications for several subunits, suggesting that
they functionally diverged independently. We further uncovered

that the largest subunits of Pol IV/V probably originated from a
gene fusion event. These results suggest that the functions of
RNAPs are probably more diverse among plants than previously
realized and provide a general model for the evolution of multi-
protein complexes.

Materials and Methods

Retrieval of sequences

Arabidopsis thaliana (L.) Heynh. and Saccharomyces cerevisiae
RNAP genes were identified previously or in The Arabidopsis
Information Resource (TAIR) (www.arabidopsis.org) and Sac-
charomyces Genome Database (SGD) (www.yeastgenome.org)
(Table S1). Protein sequence queries were used to search for ho-
mologs by BLASTP or TBLASTN with an E value of < 1910�5.
Selected plant, animal and fungus sequences were downloaded
from JGI PHYTOZOME v10 (Goodstein et al., 2012), ENSEMBL

(release 64) (ftp://ftp.ensembl.org/), fungal genome databases
(fungalgenomes.org/data/) and other databases (Table S2).

Gene nomenclature

Each RNAP gene contains a three-letter species designation from
the first letter of the genus and the first two letters of the species
(Table S2), with an exception of Schizosaccharomyces pombe
(fission yeast), abbreviated as ‘Scp’, to distinguish from ‘Spo’ for
Spirodela polyrhiza (duckweed). The species designation is
followed by the name of the Arabidopsis ortholog (or the most
similar for lineage-specific duplicates) (Table S3). The names of
animal and fungal RNAP genes contain the three-letter species
designation and the name of the Saccharomyces cerevisiae
ortholog. Additional variants of a subunit are indicated by a
lowercase suffix (Table S3).

Phylogenetic analyses

Protein sequences of each subunit family were aligned by MUSCLE

3.7 (Edgar, 2004) and manually adjusted using Jalview 2.8 (Wa-
terhouse et al., 2009). Maximum likelihood (ML) analysis was
performed using RAxML 8.0.0 (Stamatakis, 2014) and rapid
bootstrap analysis was performed with the bootstrap convergence
test using the extended majority-rule consensus tree criterion (au-
toMRE) in RAxML. Bayesian analysis (BA) was conducted using
MrBayes v3.2.2 (Ronquist et al., 2012) with 105 generation runs,
four Markov chains and sampling every 500 generations. For
each phylogenetic analysis, best-fit evolutionary models were
selected by Prottest 3 (Darriba et al., 2011) under the Bayesian
information criterion (BIC) (Table S4). Phylogenies of Brassica-
ceae and Poaceae genes for each subunit were built on alignment
of CDS (nucleotide) instead of amino acid sequences, because of
the limited information of highly similar protein sequences.
DNA sequences were aligned by PAL2NAL v12.2 (Suyama et al.,
2006) on the basis of corresponding protein alignment. The
GTR +G model was used in Bayesian and ML analyses. The
resulting trees were visualized and adjusted by MEGA 6.0
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(Tamura et al., 2013) or FigTree 1.3.1 (http://tree.bio.ed.ac.uk/
software/figtree/).

Sequence comparisons of Physcomitrella NRPD1/NRPE1
genes

The protein sequences of the three Physcomitrella patens NRPD1/
NRPE1 homologs were aligned with the angiosperm NRPD1
and NRPE1 sequences, respectively, by BLASTP. Pp1s193_6 has
more identical and similar sites to Ath.NRPD1 (380, 608) and
Aco.NRPD1 (367, 593) than it does to Ath.NRPE1 (343, 570)
and Aco.NRPE1 (361, 568), suggesting that Pp1s193_6 is an
NRPD1 ortholog. However, Pp1s83_67 and Pp1s83_168 are
more similar to NRPE1 (Pp1s83_67, 345 identical and 592 simi-
lar sites; Pp1s83_186, 414 identical and 658 similar sites) than to
Ath.NRPD1 (Pp1s83_67, 315 identical and 543 similar sites;
Pp1s83_186, 303 identical and 495 similar sites).

Detection of gene duplication and loss events

ML and Bayesian phylogenies of Brassicaceae and Poaceae RNAP
genes were reconciled with species trees of Brassicaceae (Tree
topology in newick format: (((((Ath, Aly), ((Cru, Cgr), Bst)),
(Esa, Bra)), Cpa), Ptr);) and Poaceae ((((((Sbi, Zma), (Sit, Pvi)),
(Osa, Bdi)), Mac), Spo);), respectively, by Notung 2.6 (Chen
et al., 2000) (see Table S2 for species names). The minimal num-
ber of gene duplication and loss events was detected by the ‘rear-
range’ mode in Notung 2.6: well-supported branches (Bayesian
posterior probability values of > 0.8 and ML bootstrap values of
> 80) were preserved and weak supported branches were rear-
ranged to minimize the number of duplications.

Synteny analysis

All against all BLASTP search was performed for each proteomic
dataset of the seven species of Brassicaceae and the six species of
Poaceae. MCScanX (Wang et al., 2012) was used to detect syn-
tenic blocks and the duplicate_gene_classifier program in the
MCScanX package was employed to detect syntenic genes proba-
bly from whole-genome or segmental duplications.

Selection pressure analysis

The ancestral DNA sequences for each subunit in the most recent
common ancestor of Brassicaceae or Poaceae were reconstructed
by FastML v3.1 (Pupko et al., 2000) with the joint reconstruc-
tion method from alignments of Brassicaceae and Poaceae genes
and their corresponding ML trees. Then, the Yang & Nielsen
(2000) method, implemented in the yn00 program of the PAML
package (Yang, 2007), was used to calculate the nonsynonymous
to synonymous rate ratio (x = dN/dS) between each gene and its
ancestral sequence. The distributions of dN/dS values for each
subtype of RNAP subunit were plotted by the boxplot function
in R (R Core Team, 2014). Extreme values outside the 1.5-fold
of the interquartile range were defined as outliers. As compari-
sons, the same methods were applied to RNAP genes from eight

species of Catarrhini (human and closest relatives) and five spe-
cies of Saccharomyces (Table S2).

Expression analysis

Normalized expression data of genes for each RNAP subunit
from 11 Arabidopsis tissues were obtained from the At-TAX till-
ing array dataset (Laubinger et al., 2008). Expression data for 60
maize tissues were retrieved from the ZM37 dataset on plexdb
(Dash et al., 2012). Expression levels were visualized using the
pheatmap package (Kolde, 2013) in R.

Gene structure analysis

Intron positions were retrieved from genomic GFF files and
converted to relative coordinates of the open reading frame
(ORF). Phase 0 is for an intron between two codons, phase 1
between the first and second nucleotide of a codon and,
otherwise, phase 2.

Results

Land plants have more RNAP genes than others

To obtain sequences for 12 subunits of each RNAP, we searched
databases using Arabidopsis and yeast RNAP genes as queries (see
the Materials and Methods section) and identified 89–319
homologs for 12 subunits of all RNAPs from each of 58 eukary-
otes, especially animals, plants and fungi (Table S3). The number
of genes for each subunit is constant among the animals, fungi
and green algae examined here (Fig. 1b): three copies for each of
the 1st, 2nd, 4th, 7th and 9th subunits; two copies for each of the
3rd and 11th subunits; and one copy of the 5th, 6th, 8th, 10th and
12th subunits. However, copy numbers increased to different
extents in land plants (Fig. 1b): the copy numbers for moss genes
for the 1st, 2nd and 7th subunits were seven, five and four, respec-
tively; Amborella trichopoda (the sister of all other angiosperms)
also showed increased gene copies for the 1st, 2nd, 4th, 5th, 7th,
10th and 12th subunits, suggesting distinct gene evolutionary
patterns of different subunit genes.

Phylogenetic analyses of RNAP subunits show three
evolutionary patterns

Genes for each of the 12 RNAP subunits form a distinct family.
To investigate their eukaryotic evolutionary histories, we con-
structed separate phylogenies with sequences from nine plants,
four animals and five fungi (Figs 2, S1–S6). We grouped the 12
phylogenies into three types on the basis of their inclusion in
eukaryotic RNAPs (Fig. 3): type a subunits are different among
Pol I, Pol II and Pol III, with at least three copies in the eukary-
otic ancestors (1st, 2nd, 4th, 7th and 9th) (Figs 2a, S1–S4); the
type b subunit has two copies in the eukaryotic ancestor and
one copy shared by Pol I and Pol III (3rd and 11th) (Figs 2b,
S5); and type c has only one copy (5th, 6th, 8th, 10th and 12th)
(Figs 2c, S6).
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Fig. 2 Representative phylogenies of genes for eukaryotic RNA polymerase (RNAP) subunits for three evolutionary types: (a) 1st subunits (type a); (b) 3rd

subunits (type b); (c) 5th subunits (type c). Tree topologies generated by RAxML are shown here. Bayesian posterior probability values (> 0.5) according to
MrBayes and bootstrap values (> 50) from RAxML are labeled on internal nodes. Asterisks (*) indicate Bayesian posterior probability values of 1 or
bootstrap values of 100. Aco, Aquilegia coerulea; Ath, Arabidopsis thaliana; Atr, Amborella trichopoda; Cci, Coprinus cinereus; Cel, Caenorhabditis
elegans; Cgl, Candida glabrata; Cre, Chlamydomonas reinhardtii; Dme, Drosophila melanogaster; Dre, Danio rerio; Hsa, Homo sapiens; Mgu,Mimulus

guttatus; Ncr, Neurospora crassa; Osa,Oryza sativa; Ppa, Physcomitrella patens; Sbi, Sorghum bicolor; Sce, Saccharomyces cerevisiae; Scp,
Schizosaccharomyces pombe; Smo, Selaginella moellendorffii.
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To further investigate the evolutionary patterns of genes for
plant-specific RNAP subunits, we generated gene trees for each
of the 1st, 2nd, 5th, 7th and 9th subunits of Pol II, IV and V
(Figs 4, S7–S9). To examine more recent evolutionary relation-
ships within various subfamilies of RNAP genes, we constructed
phylogenies of genes for each subunit from seven Brassicaceae
(Crucifer) species using papaya and poplar as outgroups
(Figs S10, S11). As a comparison, we also constructed phyloge-
netic trees of grass (Poaceae) genes using Musa acuminata
(banana) and Spirodela polyrhiza (duckweed) sequences as out-
groups (Figs S10, S11). The detailed results are presented in the
following subsections. Lineage-specific duplications in Brassica-
ceae or Poaceae are referred to as independent duplications.

Type a: genes for the 1st, 2nd, 4th, 7th and 9th subunits Phylo-
genetic analyses indicate that genes for each of the 1st, 2nd, 7th

and 9th subunits form three ancestral groups each shared by ani-
mals, plants and fungi: one including genes for Pol I subunits,
and another for genes encoding Pol III subunits. The copy num-
bers for these Pol I and III genes are constant for most of plant
history, except for recent independent duplications in some

species (Figs 2a, S1–S4, S10, S11). The third group in each fam-
ily contains genes encoding eukaryotic Pol II subunits, as well as
genes for plant-specific Pol IV and V subunits, indicating that
Pol IV/V genes are derived from ancestral Pol II genes.

The duplication patterns related to Pol II, IV and V vary
among the gene families (Figs 4, S7, S8). The genes for the largest
subunit form two highly supported clades (Fig. 2a): one for Pol
II and the other for Pol IV and V. The Pol IV/V clade includes
genes from moss and other land plants, with angiosperm genes
forming two monophyletic groups corresponding to Pol IV and
V, respectively, indicating that genes for the largest subunits of
Pol IV and Pol V separated in the common ancestor of extant
angiosperms (Fig. 4a). Previously, only one gene coding for the
Pol IV largest subunit (NRPD1) was obtained from spike moss
(Selaginella) and moss (Physcomitrella) (Luo & Hall, 2007).
However, we detected two copies in Selaginella and three copies
(Pp1s193_6, Pp1s83_67, Pp1s83_186 in version 1.6 annotation)
in Physcomitrella (Table S3). Their phylogenetic positions are
uncertain because of a high degree of sequence divergence; never-
theless, when we excluded Selaginella sequences, one moss gene
grouped with angiosperm NRPD1 genes and the other two genes
were close to angiosperm NRPE1 genes (Fig. 4a). In addition,
sequence comparison (see the Materials and Methods section)
indicates that the Physcomitrella protein Pp1s193_6 is most simi-
lar to the angiosperm NRPD1 protein, whereas Pp1s83_67 and
Pp1s83_168 are most similar to NRPE1, supporting the hypoth-
esis that Pol IV and V genes resulted from a duplication event
before the divergence of land plants. In addition, whereas
Arabidopsis and other Brassicaceae species have one gene encod-
ing the largest subunits of each of Pol II, IV and V, rice has two
copies for each of the Pol II, IV and V largest subunits, with rice-
specific NRPB1 and NRPD1 paralogs and NRPE1 paralogs
shared by grasses (Figs 4a, S10a), illustrating independent dupli-
cation, which also occurred in other angiosperm lineages
(Fig. 4a).

The genes for the 2nd subunits of Pol II, IV and V form two
clades (Figs 3, S1, S7): one for the eukaryotic Pol II 2nd subunits
(NRPB2); the other with the Arabidopsis NRPD2 gene encoding
the shared Pol IV/V 2nd subunit and homologs from angio-
sperms, Selaginella and Physcomitrella. The lack of a NRPD2
homolog in green algae and nonplant eukaryotes suggests that
the NRPD2 gene arose in early land plants and was maintained as
a single copy for much of land plant history, but an earlier origin
is possible. However, recent independent duplications have
occurred in Brassicaceae and Poaceae: Arabidopsis thaliana has a
second gene without a known function, as a result of a duplica-
tion shared by Arabidopsis lyrata but not other Brassicaceae spe-
cies (Fig. S10b). Interestingly, Zea mays has five genes for the 2nd

subunit: two (NRPB2a, NRPB2b) came from maize-specific
duplication, whereas three NRPD2 paralogs resulted from dupli-
cations in the common ancestor of grasses and in the common
ancestor of maize and sorghum, respectively (Fig. S10b).

The 4th subunits of Pol I, II and III are encoded by three genes
in yeast (Cramer et al., 2008), but the plant homologs of the
genes for Pol I and III have not been identified. Thus, only those
related to the Pol II genes are analyzed here (Figs 3, S2). Two
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types of plant gene were identified: one for Pol II (NRPB4) and a
second similar to the Arabidopsis NRPD4 gene for Pol IV and V.
The angiosperm NRPB4 and NRPD4 homologs form two sister
clades, each containing sequences from eudicots and monocots,
consistent with Tucker et al. (2011) using Arabidopsis, rice and
maize genes. Further, we found that Amborella (a basal angio-
sperm) also has one gene in each clade, indicating that NRPD4
genes probably resulted from duplication predating the diversifi-
cation of the extant angiosperms. Analysis with the only detected
NRPB4 homolog from the gymnosperm Norway spruce suggests
that this duplication occurred after angiosperms separated from
gymnosperms.

In addition to the clades for Pol I and III, the gene family for
the 7th subunits has one well-supported clade (Figs 3, S3) con-
taining eukaryotic Pol II genes and land plant homologs of the
Arabidopsis NRPD7 and NRPE7 genes. The latter clade contains
two groups, one with the Pol II genes, and the other including
the land plant Pol IV/V related genes, suggesting that the
NRPD7/NRPE7-like genes originated from a duplicate copy of
an ancestral NRPB7 (Pol II) gene in early land plants, consistent
with previous results (Tucker et al., 2011). Further analysis with
NRPD7/NRPE7 homologs indicates that Arabidopsis NRPD7
and NRPE7 and their respective Brassicaceae orthologs resulted
from duplication in the Brassicaceae common ancestor, after
divergence from other eudicots (Figs 4b, 5a). Homologs of the
ancestral NRPD7/NRPE7 gene are found in other eudicots and
monocots, as well as in nonflowering plants (Fig. 4b). Biochemi-
cal studies in maize indicated that Pol IV and Pol V shared the
7th subunit encoded by the only NRPD7 gene in maize (Haag
et al., 2014) (Fig. 5a). Therefore, the 7th subunit has diverged
between Pol IV and V in Brassicaceae, but not in maize. Many
independent duplications of the gene for the Pol IV/V 7th sub-
unit were detected here (Fig. 4b), potentially allowing functional
divergence between Pol IV and V.

The 9th subunit genes form three clades for eukaryotic Pol I, II
and III, respectively (Figs 3, S4). In each clade, Arabidopsis has
two copies, probably resulting from duplication after the diver-
gence of Brassicaceae and other eudicots (Fig. S8). Despite the
highly similar sequences and presence in both Pol IV and V
(Ream et al., 2009), genetic analysis in Arabidopsis revealed that
NRPB9a and NRPB9b are functionally different, with only the
rpb9b mutant showing defects in RNA-directed DNA methyla-
tion (Tan et al., 2012). Grasses have three groups of NRPB9
genes, implying at least two rounds of duplication in their ances-
tor (Fig. S10e).

Type b: genes for the 3rd and 11th subunits The families for
both the 3rd and 11th subunits each contain two ancient groups
(Figs 2b, 3, S5). The first group (NRPA3 for the 3rd subunit and
NRPA11 for the 11th subunit) is for both eukaryotic Pol I and
III, whereas the second group (NRPB3 and NRPB11) contains
genes for Pol II subunits. Like animals and fungi, most plant spe-
cies have one copy in each group, but Arabidopsis has two copies
for each of NRPA3 and NRPB3, and rice has two copies of
NRPA11 and NRPA3 genes. Phylogenetic analysis of Brassicaceae
genes revealed that NRPA3 genes underwent at least one

duplication in the Brassicaceae common ancestor (Fig. S11a).
Grass gene trees showed a rice-specific duplication for two
NRPA3 genes, but an ancestral grass duplication for the NRPA11
genes (Fig. S11a,b).

Type c: genes for the 5th, 6th, 8th, 10th and 12th subunits The
genes encoding the 5th subunits of all RNAPs are single copy in
most animals, fungi, green algae and Selaginella, but have
multiple copies in angiosperms (Figs 1, S9). The angiosperm
genes form two clades (Figs 2c, S9): one includes genes encoding
for the 5th subunit shared by Pol I, II, III and IV in Arabidopsis,
and the other, with longer branch lengths, contains genes for the
Pol V 5th subunit, suggesting that a gene duplication event
occurred before the diversification of angiosperms. Genes in both
angiosperm clades underwent more independent duplications
after eudicots and monocots diverged (Figs S9, 11c). Within the
clade of genes for Arabidopsis Pol I–IV, Brassicaceae genes formed
two monophyletic groups, implying gene duplication in their
ancestor (Fig. S11c). These results are in agreement with the pre-
vious analysis of Arabidopsis, rice and maize genes (Tucker et al.,
2011). Our analysis of the monocot genes included those of
banana and six grasses, and the results indicate that the duplica-
tion occurred before Poales split from Zingiberales (Fig. S11c).
In maize, biochemical analyses showed that both NRPB5 genes
encode the 5th subunit of Pol II (Haag et al., 2014). In the second
clade, eudicot genes underwent gene duplication events, resulting
in two sister groups; one of these duplicates experienced a
subsequent duplication event after the divergence of Brassicaceae
and other eudicots, consistent with a whole-genome duplication
(WGD) event in the common ancestor of Brassicaceae. (Figs S9,
S11c).

In addition, phylogenetic trees revealed that the genes for the
6th, 8th and 12th subunits underwent duplications in the common
ancestor of grasses, and the genes for the 6th, 8th, 10th and 12th

subunits underwent duplications in the Brassicaceae common
ancestor (Figs S6, S11d–g), revealing more lineage-specific gene
duplications.

Expression and duplication patterns of RNAP subunits

On the basis of earlier described phylogenetic analyses, we recon-
structed the evolutionary history of all the genes related to RNAP
subunits in Arabidopsis (Figs 5, S12a) and maize (Figs 5, S13a).
Although having experienced relatively short histories, pairs of
recent duplicates in these two species, including Arabidopsis
NRPB3a/NRPB3b, NRPE5/NRPD5b, NRPD7/NRPE7,
NRPB8a/NRPB8b, NRPB9a/NRPB9b, NRPB10/NRPB10b and
NRPB12/NRPB12b, and maize NRPE1a/NRPE1b, NRPD2a/
NRPD2b/NRPE2c, NRPB5a/NRPB5b, NRPB8/NRPB8b,
NRPB9a/NRPB9b and NRPB10/NRPB10b, exhibit differential
gene expression patterns (Figs S12b, S13b) and distinct proper-
ties in terms of participation or not in relevant protein complexes
or the extent of such participation (Fig. S12c). For example, one
type of 12th subunit (NRPB12a) was detected by mass spectrom-
etry using purified polymerases from Arabidopsis (Ream et al.,
2009); nevertheless, the second copy (NRPB12b) was expressed
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at higher levels in seedlings and leaves than in most tissues, sug-
gesting that NRPB12b might function in specific tissues. These
findings suggest that these subunits have undergone functional
diversification.

To further examine parallel duplications of RNAPs, focusing
on the subunits that have experienced diversification during plant
evolution, we analyzed the gene duplication patterns in Brassica-
ceae and Poaceae by reconciling gene trees with species trees. For
28 genes encoding such subunits, we identified multiple indepen-
dent duplications in Fig. 6. The duplication and loss patterns are
different between Brassicaceae and Poaceae, as well as among
different subunits, suggesting that RNAPs might have evolved
different functions in separate plant lineages. Brassicaceae under-
went two rounds of WGDs after separating from other eudicots.
Poaceae also underwent two WGDs after divergence from other
monocots. However, for 28 genes present in the shared ancestor
of both families, only nine duplications were detected in the sepa-
rate ancestors of each family, respectively, suggesting that most
RNAP genes were lost after WGD, but before the divergence of
the species examined here. In addition, many duplications were
species specific, especially in Brassica rapa and Panicum virgatum,
probably because each of these plants underwent additional inde-
pendent WGD(s).

Sequence analysis suggests subunit coevolution within an
RNAP complex and divergence between different RNAPs

To compare selection pressures on different subunits of different
RNAPs at the same timescale, we reconstructed ancestral
sequences of each gene in the common ancestor of Brassicaceae
and calculated the ratio of the rates of nonsynonymous to synon-
ymous substitutions (x = dN/dS) between each Brassicaceae gene
and the ancestral gene. Similar analyses were performed for Poa-
ceae genes. Interestingly, genes encoding different subunits of the
same RNAP have similar dN/dS ratios; by contrast, homologs
encoding the same subunit for different RNAPs exhibit different
x values (Fig. 7), with specific values presented for each species
(Figs 7, S14a,b). The results strongly support the hypothesis that
a protein complex can be considered as an evolutionary unit
whose components coevolve under similar selection pressure. On
comparison with genes for Pol I- and Pol III-specific subunits,
genes for Pol II subunits have the lowest dN/dS, ratios, in plants
(Fig. 7) as well as in animals and fungi (Fig. S14c,d), indicating
that genes for Pol II subunits are under strong purifying selection.
Genes for Pol IV and Pol V subunits have much higher dN/dS
ratios than their Pol II homologs (Fig. 7). Our results are consis-
tent with and extend beyond the previous analysis using the 1st
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and 2nd subunits from Arabidopsis and rice (Luo & Hall, 2007).
Brassicaceae NRPD7 and NRPE7 originated from duplication in
the common ancestor of Brassicaceae and diverged under different
selection pressures (Fig. 7a). Two copies of NRPE1 and NRPD2
in Poaceae also have distinct dN/dS ratios (Fig. 7b), suggesting dif-
ferent evolutionary constraints after duplication. In addition,
some recent duplicates in both families, such as Bra.NRPB2 and
Bra.NRPB2b and Pvi.NRPC2 and Pvi.NRPC2d, showed much
greater x values than the average of the same subunit in the
same RNAP, suggesting that these genes are less constrained and
possible candidates for new functions.

Origin of the largest subunit of plant-specific RNAPs

The Pol IV/V largest subunits contain C-terminal regions that
are different from those of Pol I–III. Sequence analysis showed
that the Pol IV/V C-terminal region is conserved among plants
and contains Domain of Unknown Function 3223 (DUF3223)
as defined in the Pfam database. DUF3223 is detected in plants,
and nonpolymerase proteins in bacteria and protists, but not in
animals and fungi. To investigate further the distribution of
DUF3223, we searched plant genomes for genes encoding pro-
teins with DUF3223, and found five in each of Arabidopsis, rice
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and Amborella, seven in Physcomitralla and one in green algae
(Fig. 8). The Arabidopsis genes are NRPD1, NRPE1, DeCL
(DEFECTIVE CHLOROPLASTS AND LEAVES), DeCL-like
and Domino1.

Phylogenetic analysis of plant genes encoding proteins with
DUF3223 showed that NRPD1 and NRPE1 genes are clustered
with DeCL and DeCL-like genes with high support values, and
contain sequences from the land plant species examined here
(Fig. 8). Gene structure analysis showed that the DUF3223
domains of NRPD1 and NRPE1 are encoded by three exons, sep-
arated by ‘phase 2’ and ‘phase 0’ introns. Strikingly, DeCL and
DeCL-like genes also have three exons with the ‘phase 2’ first
intron and the ‘phase 0’ second intron, congruent with introns
within the NRPD1/NRPE1 DUF3223 domains (Figs 8, S15a).
Both phylogenetic results and gene structure conservation sup-
port the idea that the DUF3223 domains of NRPD1/NPRE1
and DeCL/DeCL-like genes have a common ancestor in land
plants. As NRPD1/NRPE1 have N-terminal sequences homolo-
gous to NRPB1 and C-terminal sequences homologous to DeCL/
DeCL-like genes, NRPD1 and NRPE1 could have resulted from a
gene fusion event of an NRPB1-like gene and a DeCL-like gene in
early land plants (Fig. S15b).

Discussion

Duplications of RNAP subunits at different times in land
plant history and independently in angiosperm groups

We have performed a comprehensive evolutionary analysis of
RNAP gene families. Our results and previous findings of Pol
IV/V subunit compositions in Arabidopsis (Huang et al., 2009;

Ream et al., 2009; Law et al., 2011) (Fig. S12c) and maize (Haag
et al., 2014) (Fig. S13c) support a multistep model for the evolu-
tion of plant RNAPs (Fig. 9b). In this model, plant-specific su-
bunits were derived from eukaryotic homologs at different times,
resulting in increased RNAP diversity. As first proposed by Luo
& Hall (2007), an early event was the duplication of NRPB1 in
the ancestor of land plants and the Charophyta, although an even
earlier origin is possible. Subsequently, a fusion of one duplicate
with a DeCL-like gene produced the common ancestral gene for
NRPD1 and NRPE1. This ancestral gene then duplicated to gen-
erate NRPD1 and NRPE1 in the common land plant ancestor.
The genes for the Pol II 2nd and 7th subunits (NRPB2 and
NRPB7) also duplicated early in land plants, resulting in one new
copy for each gene, encoding the Pol IV/V 2nd and 7th subunits,
respectively. In short, the land plant ancestor should have had the
NRPD1–NRPD2–NRPD7 and NRPE1–NRPD2–NRPD7
combinations, whereas the other subunits were probably shared
by Pol II, IV and V.

During angiosperm evolution, further independent duplica-
tions and differentiations resulted in greater divergence of sub-
unit composition between Pol II and IV/V and among different
angiosperm groups. In the angiosperm ancestor, additional dupli-
cation yielded new genes for the Pol IV/V 4th subunits (NRPD4)
and the Pol V 5th subunit (NRPE5). After the divergence of
monocots and eudicots, RNAP genes underwent separate dupli-
cations, resulting in different evolutionary patterns in these two
major angiosperm groups. Within each group, genes for several
subunits further duplicated independently in the ancestors of
Brassicaceae and Poaceae, increasing the complexity for subunit
compositions. Some duplicates have not yet differentiated func-
tionally and are shared between Pol II, IV and V (e.g. multiple
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Fig. 8 A proposed origin of the Domain of
Unknown Function 3223 (DUF3223) in the
1st subunits of Pol IV and Pol V. A maximum
likelihood (ML) tree of plant genes encoding
proteins with a DUF3223 domain. Structures
of DUF3223 domain genes are shown
following each gene name. The DUF3223
domain is colored in yellow. Introns located
in the region of the DUF3223 domain are
marked with red (phase 0 introns) or blue
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NRPB9 in Arabidopsis and multiple NRPB6 in both Arabidopsis
and maize). By contrast, the genes for the 7th subunit, duplicated
in the ancestor of Brassicaceae, have differentiated for Pol IV and
V, respectively (Ream et al., 2009). NRPD2/NRPE2 duplicated
in the common ancestor of Poaceae, and then duplicated further
in Z. mays, resulting in two copies of the 2nd subunit for Pol IV
and three isoforms of the 2nd subunit for Pol V (Haag et al.,
2014). Other independent duplications have occurred in differ-
ent angiosperm groups (Figs 4, S7–S9); further biochemical stud-
ies in different plants might reveal even greater functional
diversity among RNAPs.

A crucial role of WGD in RNAP diversification

RNAP evolution is possibly facilitated by numerous genome
duplications. WGDs occur widely in animals, fungi and plants
(Kellis et al., 2004; Kasahara, 2007; Jiao et al., 2011; Lee et al.,
2013) and have been implicated in the evolution of novel

complexes and pathways because of the simultaneous duplication
of all components (Jaillon et al., 2009). However, the functional
differentiation of components of a complex after WGD is much
less well understood. The evolution of beneficial novel function
in one subunit might be constrained by necessary interactions
with other subunits. In plants, WGDs are particularly prevalent
(Jiao et al., 2011; Lee et al., 2013) and might have played an
important role in RNAP evolution. Indeed, phylogenetic analyses
of RNAP subunit genes placed duplication events at the same
node as known plant WGDs (Jiao et al., 2011; Lee et al., 2013),
including those in the angiosperm ancestor (4th and 5th subunits;
Figs S2, S9), eudicot ancestor (5th and 7th subunits; Figs 4b, S9),
Brassicaceae ancestor (3rd, 5th, 6th, 7th, 8th, 9th, 10th and 12th su-
bunits; Fig. 6a) and grass ancestor (1st, 2nd, 6th, 8th, 9th, 11th and
12th subunits; Fig. 6b). For many recent duplicate gene pairs,
strong evidence for duplication as a result of WGD was detected
for the RNAP genes in syntenic regions from WGDs (Figs S10,
S11).
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Although each WGD duplicates the entire genome, we found
that only a small fraction of genes is retained subsequently and
gene retention rates vary among different subunits (Fig. 6), possi-
bly because of different functional or structural constraints on
different subunits. It is possible that RNAPs might have func-
tionally diverse forms among different plants. For example, only
one NRPE1 gene was detected in the Arabidopsis genome, but
two sets of NRPE1 genes were found in grass genomes (NRPE1
and NRPE1b). NRPE1b evolved rapidly with relatively higher
dN/dS values than any other RNAP gene, and the maize NRPE1b
is specifically expressed in immature tassels, suggesting that
NRPE1b might have a novel function associated with reproduc-
tive development in grasses. Both Arabidopsis and maize have
multiple copies of NRPD2 genes. Expression and genetic analysis
showed that only one of the two Arabidopsis NRPD2 genes has
detectable function (Onodera et al., 2005), but all three maize
NRPD2 paralogs are expressed and have distinct functions (Sid-
orenko et al., 2009; Stonaker et al., 2009). Interestingly, maize
NRPE2c is preferentially expressed in the tassel and pollen. These
findings suggest that grasses might possess distinct types of
RNAPs compared with those of Arabidopsis.

Distinct evolutionary patterns are associated with diverse
subunit functions

The heteromeric RNAPs have at least 12 subunits with different
functional and structural characteristics (Fig. 9a), which could
explain the various evolutionary patterns for different subunits
presented here. This is consistent with previous studies showing
that different subunits from the same complex have discordant
evolutionary patterns (Matalon et al., 2014). Plants and other
eukaryotes have distinct 1st, 2nd, 4th, 7th and 9th subunits for Pol
I, II and III. During plant evolutionary history, genes for the 1st,
2nd, 4th and 7th subunits evolved novel copies for plant-specific
subunits of Pol IV and V. The 1st and 2nd subunits are catalytic
subunits, responsible for DNA binding and RNA synthesis
(Cramer et al., 2001, 2008). In Pol II, the 4th and 7th subunits
form a subcomplex that interacts with the two largest subunits
and is involved in recruitment of 30-processing factors and
mRNA export (Runner et al., 2008; Harel-Sharvit et al., 2010).
The duplicate copies of these subunits could have contributed to
RNAP functional diversity by allowing the optimization of inter-
actions for different DNA templates and RNA products.
Although the gene tree for the 9th subunit has no plant-specific
clade, NRPB9 underwent duplication in the Brassicaceae ancestor
and two rounds of duplication in the grass ancestor, with the
Arabidopsis paralogs having partially redundant functions in Pol
IV/Pol V pathways (Tan et al., 2012) and maize having two and
one paralogs specific for Pol II and Pol IV/Pol V, respectively.
Therefore, compared with the other subunits distinct for differ-
ent types of RNAPs, the Pol IV/V 9th subunit diverged from Pol
II most recently.

Proteins with multiple interactive partners via the same inter-
active site are highly conserved because sequence or copy num-
ber changes can affect many interactions, whereas proteins
interacting with different partners using different interactive sites

can coevolve with the site-specific partner. The evolutionary pat-
terns of eukaryotic RNAP common subunits (6th, 8th, 10th and
12th) partly support this hypothesis: common subunits have
more conserved sequences and generally fewer copies; only very
recent duplicate copies are retained; the duplicates might be in
the process of functional divergence. However, the gene family
for the 5th subunit is an exception. Only one 5th subunit gene is
found in animal or fungal genomes, but it has duplicated
multiple times in plant history. In Arabidopsis, NRPB5 is shared
by Pol I, II, III and IV and NRPE5 is specific for Pol V (Ream
et al., 2009). Structural studies of the yeast RNAPs showed that
RPB5 contacts DNA ahead of a transcriptional fork with its
N-terminal region binding to RPB1 and C-terminal region
interacting with transcription factors (Cramer et al., 2001,
2008). The novel 5th subunits in plants might be responsible for
the recognition of different DNA templates and binding to tran-
scriptional factors for Pol V-specific transcription. The new 5th

subunit gene (NRPE5) arose in angiosperms, suggesting that it is
important for an epigenetic mechanism specific to flowering
plants.

Our analysis further suggests that recently duplicated RNAP
genes tend to duplicate further, such as NRPE1, NRPD2, NRPE5
and NRPD7. One plausible explanation is that these genes are
under reduced selection pressure. These genes have higher dN/dS
ratios, indicating that they are under weaker purifying selection
(Fig. 7). In addition, mutants of NRPE1 and NRPE5 have less
defective phenotypes than mutants of their counterparts in Pol I,
II and III (Onodera et al., 2005, 2008; Lahmy et al., 2009; Ream
et al., 2009), consistent with the idea that newly arising subunits
are under reduced evolutionary constraints. Our results support a
step-wise model for the evolution of multisubunit RNAPs in
plants, with independent duplication and diversification in differ-
ent plant groups, providing insights into the evolution of multi-
subunit protein complexes in general.
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