
Error Handling

OOA/OOD

xuyingxiao@126.com

Error Handling Patterns

Split Domain and Technical

Errors
“domain errors”, are due to errors in the business

logic or business processing (e.g. wrong type of

customer for insurance policy).

“technical errors”, are caused by problems in the

underlying platform (e.g. could not connect to

database) or by unexpected faults (e.g. divide by

zero).

Handling technical errors in domain code makes

this code more obscure and difficult to maintain.

Solution

Split domain and technical error handling.

Create separate exception/error hierarchies

and handle at different points and in different

ways as appropriate.

public class DomainException extends Exception

{

...

}

Public class InsufficientFundsException
extends …Exception

{

...

}

public class SystemException extends Exception

{

...

}

public float withdrawFunds(float amount)

throws InsufficientFundsException, SystemException

{

try

{

// Domain code that could generate various errors

// both technical and domain

}

catch (DomainException ex)

{

throw ex;

}

catch (Exception ex)

{

throw new SystemException(ex);

}

}

Error Handling Patterns

Big Outer Try Block

Errors will propagate right to the edge of the

system and will appear to “crash” the

application if not handled at that point.

Users are mostly on remote sites and will

not do much to report errors

Solution

Implement a Big Outer Try Block at the

“edge” of the system to catch and handle

errors that cannot be handled by other tiers

of the system. The error handling in the

block can report errors in a consistent way

at a level of detail appropriate to the user

constituency.

public class ApplicationMain {

...

public static void main(String[] args) {

try{

ApplicationMain m = new ApplicationMain() ;

m.initialize() ;

m.execute() ;

m.terminate() ;

}

catch(AppDomainException de) {

// Domain exceptions shouldn’t get to this level as

// they should be handled in the user interface. If

// they get here, report the text to the user and

// log them in a local log file

}

catch(AppTechnicalException te) {

// Technical exceptions here are probably user interface

// problems. Display a generic apology and log to a

// local log file

}

catch(Throwable t) {

// Other exception objects must be internal errors

// that could not be caught and handled elsewhere.

// Display a generic apology and log to a local log file

}

}

}

Error Handling Strategies

Error Handling Patterns

Log at Distribution

Boundary

The details of technical errors rarely make

sense outside a particular, specialized,

environment where specialists with

appropriate knowledge can address them.

Multi-tier systems, particularly those that use

a number of distinct technologies in different

tiers.

Solution

When technical errors occur, log them on
the system where they occur passing a
simpler generic SystemError back to the
caller for reporting at the end-user interface.

The generic error lets calling code know that
there has been a problem so that they can
handle it but reduces the amount of system-
specific information that needs to be passed
back through the distribution boundary.

Error Handling Patterns

Unique Error Identifier

If an error on one tier in a distributed system

causes knock-on errors on other tiers you

get a distorted view of the number of errors

in the system and their origin.

Solution

Generate a Unique Identifier when the

original error occurs and propagate this back

to the caller.

Always include the Unique Identifier with any

error log information so that multiple log

entries from the same cause can be

associated and the underlying error can be

correctly identified.

Implementation

 uniqueness of the error identifier

 space

 time

 integrity

 consistency with which it is used in the logs.

Error Handling Patterns

Hide Technical Error

Detail from Users

The technical details of errors that occur are

typically of no interest to the end-users of a

system.

If exposed to such users, this error

information may cause unnecessary

concern and support overhead.

Solution

Implement a standard mechanism for

reporting unexpected technical errors to

end-users.

The mechanism can report all errors in a

consistent way at a level of detail

appropriate to the different user

constituencies who need to be informed

about the error.

Implementation

void notifyTechnicalError(Throwable t) ;

perform two key tasks:

Consequence

Error Handling Patterns

Log Unexpected Errors

If routine error conditions are logged, this

makes real errors requiring operator

intervention difficult to spot.

Solution

Implement separate error handling

mechanisms for expected and unexpected

errors.

Error conditions that are expected to arise in

the course of normal domain processing

should not be logged but handled in the

code or by the user. Hence, any logged

error should be viewed as requiring

investigation.

Implementation

use two distinct error handling approaches

for expected and unexpected errors:

 Log unexpected errors according to the other

patterns

 Do not log expected errors,

could not connect to database

no such product code

One variation on this approach is

 log different types of error message to different
places.——application event log and security
event log

a user failing to authenticate

large numbers of failed searches at a search
engine site

A second variation

 log different types of error message in one

location but to mark each log message with one

or more attributes that allow a set of filters to be

created to provide the ability to extract various

subsets of the log content on demand to support

different uses (such as error monitoring versus

usability analysis).

Consequences

Error Handling Patterns

Make Exceptions

Exceptional

A number of languages include exception

handling facilities and these are powerful

additions to the error handling toolkit

available to programmers.

However, if exceptions are used to indicate

expected error conditions occurring, then

calling code becomes much more difficult to

understand.

Solution

Indicate expected domain errors by means

of return codes.

Only use exceptions to indicate runtime

problems such as underlying platform errors

or configuration/data errors.

Implementation

Conditions that will occur routinely in
standard algorithms

 be handled as part of the standard business
logic in the system.

Conditions that will only occur due to
unexpected errors

 be handled by a combination of logging and
exiting the current code block via an exception
path.

