Information Security 09

Authentication

Chapter14 and supplements

内容间的联系

Review：安全层次

Outline of Talk

－Definitions
－Passwords
－Unix Passwords
－One time passwords
－Challenge－response techniques

Definitions

Authentication：

－A claimant tries to show a verifier that the claimant is as declared
－identification
－Different from message authentication
－which enables the recipient to verify that messages have not been tampered with in transit（data integrity）and that they originate from the expected sender（authenticity）．

Definitions

Authentication

- 消息认证／报文的鉴别
- 身份认证
－Message authentication has no timeliness
－Entity authentication happens in real time
－双向和单向认证

A good authentication scheme is．．．

－Sound：an honest party can successfully authenticate him／herself
－Non－transferable
－No impersonation
－All this is true even when
－A large number of authentications are observed
－Eve is able to spoof／eavesdrop
－Multiple instances are run simultaneously

Basis of Authentication

－Something known－passwords， PINs，keys．．．
－Something possessed－cards， handhelds．．．
－Something inherent－biometrics

PINs and keys

－Long key on physical device（card），short PIN to remember
－PIN unlocks long key
－Need possession of both card and PIN
－Provides two－level security

Outline of Talk

－Definitions
－Passwords
－Unix Passwords
－One time passwords
－Challenge－response techniques

Basic password authentication

－Setup
－User chooses password
－Hash of password stored in password file
－Authentication
－User logs into system，supplies password
－System computes hash，compares to file

Passwords－weak authentication

－Usually fixed
－Stored either in the clear，or＂encrypted＂ with a OWF
－Rules reduce the chance of easy passwords
－Salt increases search space for a dictionary attack
－There are many examples using password－based authentication
－how to manage passwords

Example：UNIX passwords

／etc／passwd
／etc／shadow
Username：password：UID ：GID：USERINFO：HOME：SHELL

Attacks on password schemes

－Replay of fixed passwords
－Exhaustive search
－ 8 character password has 40－50 bits
－More directed dictionary attacks
－Crack－widely available tool for doing this
－Online dictionary attack
－Guess passwords and try to log in
－Offline dictionary attack
－Steal password file，try to find p with hash（p）in file

Dictionary Attack－some numbers

－Typical password dictionary
－1，000，000 entries of common passwords
－people＇s names，common pet names，and ordinary words．
－Suppose you generate and analyze 10 guesses per second
－This may be reasonable for a web site；offline is much faster
－Dictionary attack in at most 100，000 seconds $=28$ hours，or 14 hours on average
－If passwords were random
－Assume six－character password
－Upper－and lowercase letters，digits， 32 punctuation characters
－689，869，781，056 password combinations．
－Exhaustive search requires 1，093 years on average

UNIX passwords

－User password serves as key to encrypt known plaintext（64 bit zeroes）
－Encryption－modification of DES，iterated 25 times
－ 12 bit salt added－total $64+12=76$ bits
－Salt taken from system clock，［a－zA－Z0－9．／］
－Alters expansion function of DES
－char＊crypt（const char＊key，const char＊salt）；

Salt（使用加密技术生成的随机数）

UUnix password line

When password is set，salt is chosen randomly

Advantages of salt

－Without salt
－Same hash functions on all machines
－Compute hash of all common strings once
－Compare hash file with all known password files
－With salt
－One password hashed 2^{12} different ways
－Precompute hash file？
－Need much larger file to cover all common strings
－Dictionary attack on known password file
－For each salt found in file，try all common strings
－Now，SHA1 is recommended

復最大叓软件学院

Summary：Passwords

－Easy to implement
－Easy to use
－But，The Weakest form of Authentication
－？？？
－窃取A的password，将在很长一段时间拥有A的权限，直到A发现

- 特别的，网络环境下远程认证
- 远程登录Unix主机，password传递形式？

基于口令的认证＋明文传输

- Telnet远程登录
- 逐个字母发送，明文方式
- POP3邮件登录
- Ftp服务
- 嗅探（Sniffer）相当容易
Packet Details -----
胞
1 -
* 3364 72 3A 30 33 [3d6310e7c,crr:03]
* 2C 703035 2C 65 [,pos:08,sal:05,e]
* 6475 2C 6D 6172 [du:03,sta:02, mar]
* 3A 30 3A 33 32 3B [:0,gen: 1 , age:32;]
* 205320534944 [SINA_USER=; SID]
* 3D 3B 6C 6F 67 69 [=; userinfo_logi]
* 6E 7434323937 [ntime=1016174297]
* 3B 206861 6E 6E [; userinfo_chann]
* 65 6C 7269 6E 66 [el=aail; userinf]
* 6F 5F 3D 313632 [o_renoteaddr= 1]
* 2E 312053 4D 3D [. ; SU=]
* 5369 6D 79 6E 75 [Sinallail.....aynu]
* 6D 3D 7373 3D 26 [$\mathrm{m}=1$ tuser=tpass= t]
* 75 3D 707377 3D [u= \quad \&ps\%=]
* 25334125 [\square tl=http $33 A$ A $]$
* 3246 6E 61 2E 63 [2FZ2Fnail.sina.c]
* 6F 6D 6269 6E 25 [on.cnX2Fcgi-binX]
* 324672 6F 6475 [2Faail.cgitprodu]
* 6374
[ct=ail]

网络环境下的认证

- 基本假设：
- C／S 模型

- 多server，
- 同样的口令，还是不同的？
- 单向－＞双向，
- Server需要对每个user出示独特的口令吗？

Authentication Problems

－Problems
－Network sniffing \longrightarrow Encryption，but key distribution problems
－Malicious or weak－security website $\longrightarrow O W F$ ，hashing
－Phishing
－Common password problem next few slides
－Pharming－DNS compromise
－Malware on client machine
－Spyware
－Trojan Horse

ex Password Phishing Problem

－User cannot reliably identify fake sites
－Captured password can be used at target site

Common Password Problem

－Phishing attack or break－in at site B reveals pwd at A
－Server－side solutions will not keep pwd safe
－Solution：Strengthen with client－side support

Defense：Password Hashing

－Generate a unique password per site
－ HMAC $_{\text {fido：123 }}$（banka．com）\Rightarrow Q7a＋0ekEXb
－ HMAC $_{\text {fido：123 }}$（siteb．com）$\Rightarrow \mathrm{OzX2+ICiqc}$
－Hashed password is not usable at any other site
－Protects against password phishing
－Protects against common password problem

Outline of Talk

- Definitions
- Passwords
- Unix Passwords
- One time passwords
- Challenge-response techniques

One time passwords

－Avoids replay attacks
－Shared lists－pre－distribute list
－Sequentially updated－create next password while entering current password
－Based on one way functions－Lamport＇s scheme．．．

Lamport＇s One Time Passwords

－1981，by Lamport
－Initialization
－User has a secret w
－Using a OWF h ，create the password sequence：

$$
w, h(w), h(h(w)), \ldots, h^{t}(w)
$$

－Bob knows only $h^{t}(w)$
－Authentication：
－Password for ith identification is：

$$
w_{i}=h^{t-i}(w)
$$

S／KEY One－Time Password System

－Based on Lamport＇s OTP
－Initialization
－User has a secret：w，seed（non－secret）
－Using a OWF h ，create the password sequence：

$$
w, h(w, \text { seed }), h(h(w), \text { seed }), \ldots, h^{t}=h\left(h^{t-1}, \text { seed }\right)
$$

－Bob server knows：seed，Sequence\＃，h^{t}
－Authentication：
－Password for $t^{\text {th }}$ identification is：

$$
w_{i}=h^{t-i}=h\left(w_{i-1}, \text { seed }\right)
$$

使用seed，Sequence\＃

－多个server，Password 可重用（使用不同 seed即可）
－Server 可发起Challenge：
－［seed，sequence\＃］

Attacks on OTPs．．

－Pre－play attack－Eve intercepts an unused password and uses it later
－Make sure you＇re giving password to the right party
－Bob server must be authenticated

Shortcomings of OTPs．．

－使用500－1000次需要Reinitialization

- 开销不小
- 不支持双向认证
- 保密性没考虑

Outline of Talk

－Definitions
－Passwords
－Unix Passwords
－One time passwords
－Challenge－response techniques
－Also＂one－time＂

Challenge－response authentication

－Alice is identified by a secret she possesses
－Bob needs to know that Alice does indeed possess this secret
－Alice provides response to a time－variant challenge
－Response depends on both secret and challenge
－To defense sniffer attack，replay attack

Challenge-response authentication

Using

- Symmetric encryption
- One way functions
- Public key encryption
- Digital signatures

using Symmetric Key Encryption

－Alice and Bob share a key K

向：Using random numbers

－Bob \rightarrow Alice：r_{b}
－Alice \rightarrow Bob：$E_{K}\left(r_{b}, B\right)$
－Bob checks to see if r_{b} is the one it sent out
－Also checks＂B＂－prevents reflection attack
－r_{b} must be non－repeating

单向：Using timestamps

－Time－Based Implicit Challenge
－Alice \rightarrow Bob：$E_{K}\left(t_{A}, B\right)$
－Bob decrypts and verified that timestamp is OK
－Parameter B prevents replay of same message in $B \rightarrow A$ direction
－Bob \rightarrow Alice：r_{b}
－Alice \rightarrow Bob：$E_{K}\left(r_{a}, r_{b}, B\right)$
－Alice Challenge Bob
－Bob \rightarrow Alice：$E_{K}\left(r_{a}, r_{b}\right)$
－Alice checks that r_{a}, r_{b} are the ones used earlier

Shortcomings．．

－多Server，要和不同的Server共享不同的Key
－Key Distribution？
－Key management ？

Challenge-response authentication

Using

- Symmetric encryption
- One way functions
- Public key encryption
- Digital signatures

筞 S ，

－Instead of encryption，used keyed MAC h_{K}
－Check：compute MAC from known quantities，and check with message
－SKID2（unilateral），and SKID3（mutual）

管高lutual authentication using keyed MAC－SKID3

－Bob \rightarrow Alice：r_{b}
－Alice \rightarrow Bob：$r_{a}, h_{K}\left(r_{a}, r_{b}, B\right)$
－Bob \rightarrow Alice：$h_{K}\left(r_{a}, r_{b}, A\right)$

Unilateral authentication

－Bob \rightarrow Alice：r_{b}
－Alice \rightarrow Bob：$r_{a}, h_{K}\left(r_{a}, r_{b}, B\right)$
－Same as SKID3 without last exchange

Challenge－response authentication

Using

－Symmetric encryption
－One way functions
－Public key encryption
－Digital signatures

Wethentication based on public key decryption

－Alice \rightarrow Bob：$P_{B}\left(r_{A}, B\right)$
－Bob \rightarrow Alice：$P_{A}\left(r_{A}, r_{B}\right)$
－Alice \rightarrow Bob：r_{B}

Challenge－response authentication

Using

－Symmetric encryption
－One way functions
－Public key encryption
－Digital signatures

Evilateral Authentication using Signatures

Alice \rightarrow Bob： $\operatorname{cert}_{A}, t_{A}, B, S_{A}\left(t_{A}, B\right)$

Bob checks：
－Timestamp OK
－Identifier＂B＂is its own
－Signature is valid（after getting public key of Alice using certificate）

Unilateral Authentication using Signatures

Bob \rightarrow Alice：r_{B}
Alice \rightarrow Bob： cert $_{A}, r_{A}, B, S_{A}\left(r_{A}, r_{B}, B\right)$

Bob checks：
－Identifier＂B＂is its own
－Signature is valid（after getting public key of Alice using certificate）
－Signed r_{A} prevents chosen－text attacks

（e）Mutual Authentication using Signatures

Bob \rightarrow Alice：r_{B}
Alice \rightarrow Bob：cert ${ }_{A}, r_{A}, B, S_{A}\left(r_{A}, r_{B}, B\right)$
Bob \rightarrow Alice： cert $_{B}, A, S_{B}\left(r_{A}, r_{B}, A\right)$

