
1

Information Security 09

Authentication

Chapter14 and supplements

2

内容间的联系

密码学

基本理论-成熟

安全理论

应用相当广泛
访问控制、认证、

PKI、数字证书等

什么是

信息安全?
讨论、总结、清晰 代码安全 网络安全

3

Review: 安全层次

安全的密码算法

安全协议

网络安全

系统安全

应用安全

4

Outline of Talk

• Definitions

• Passwords

– Unix Passwords

– One time passwords

• Challenge-response techniques

5

Definitions

Authentication:

• A claimant tries to show a verifier that
the claimant is as declared

– identification

• Different from message authentication
– which enables the recipient to verify that

messages have not been tampered with in
transit (data integrity) and that they originate
from the expected sender (authenticity).

6

Definitions

Authentication

• 消息认证/报文的鉴别

• 身份认证

– Message authentication has no timeliness

– Entity authentication happens in real time

• 双向和单向认证

7

A good authentication scheme is…

• Sound: an honest party can successfully

authenticate him/herself

• Non-transferable

• No impersonation

• All this is true even when

– A large number of authentications are

observed

– Eve is able to spoof/eavesdrop

– Multiple instances are run simultaneously

8

Basis of Authentication

• Something known - passwords,

PINs, keys…

• Something possessed - cards,

handhelds…

• Something inherent - biometrics

9

PINs and keys

• Long key on physical device (card), short

PIN to remember

• PIN unlocks long key

• Need possession of both card and PIN

• Provides two-level security

10

Outline of Talk

• Definitions

• Passwords

– Unix Passwords

– One time passwords

• Challenge-response techniques

11

Basic password authentication

• Setup
– User chooses password

– Hash of password stored in password file

• Authentication
– User logs into system, supplies password

– System computes hash, compares to file

12

Passwords -weak authentication

• Usually fixed

• Stored either in the clear, or “encrypted”
with a OWF

• Rules reduce the chance of easy
passwords

• Salt increases search space for a
dictionary attack

• There are many examples using
password-based authentication

– how to manage passwords

13

Password file User

 exrygbzyf
 kgnosfix
 ggjoklbsz
 …
 …

mypasswd

hash function

Example: UNIX passwords

/etc/passwd

/etc/shadow

 Username: password: UID : GID: USERINFO: HOME: SHELL

14

Attacks on password schemes

• Replay of fixed passwords

• Exhaustive search

– 8 character password has 40-50 bits

• More directed dictionary attacks

– Crack - widely available tool for doing this

– Online dictionary attack
• Guess passwords and try to log in

– Offline dictionary attack
• Steal password file, try to find p with hash(p) in file

15

Dictionary Attack – some numbers

• Typical password dictionary
– 1,000,000 entries of common passwords

• people's names, common pet names, and ordinary words.

– Suppose you generate and analyze 10 guesses per
second
• This may be reasonable for a web site; offline is much faster

– Dictionary attack in at most 100,000 seconds = 28
hours, or 14 hours on average

• If passwords were random
– Assume six-character password

• Upper- and lowercase letters, digits, 32 punctuation
characters

• 689,869,781,056 password combinations.

• Exhaustive search requires 1,093 years on average

16

UNIX passwords

• User password serves as key to encrypt known

plaintext (64 bit zeroes)

• Encryption - modification of DES, iterated 25

times

• 12 bit salt added - total 64 + 12 = 76 bits

– Salt taken from system clock, [a-zA-Z0-9./]

– Alters expansion function of DES

– char *crypt(const char *key, const char *salt);

18

Salt(使用加密技术生成的随机数)

Unix password line
walt:fURfuu4.4hY0U:129:129:Belgers:/home/walt:/bin/csh

25x DES

Input
Salt

Key

Constant

Plaintext

Ciphertext

Compare

When password is set, salt is chosen randomly

19

Advantages of salt

• Without salt

– Same hash functions on all machines

• Compute hash of all common strings once

• Compare hash file with all known password files

• With salt

– One password hashed 212 different ways

• Precompute hash file?

– Need much larger file to cover all common strings

• Dictionary attack on known password file

– For each salt found in file, try all common strings

• Now, SHA1 is recommended

20

Summary: Passwords

– Easy to implement

– Easy to use

• But, The Weakest form of Authentication

– ???

–窃取A的password，将在很长一段时间拥有A

的权限，直到A发现

–特别的，网络环境下远程认证

• 远程登录Unix主机，password传递形式？

21

基于口令的认证+明文传输！！！

• Telnet远程登录

– 逐个字母发送，明文方式

• POP3邮件登录

• Ftp服务

• ……

• 嗅探（Sniffer）相当容易

22

认证例子：sina的邮件登录

23

网络环境下的认证

• 基本假设：

– C/S 模型

• 多server，

–同样的口令，还是不同的？

• 单向->双向，

– Server需要对每个user出示独特的口令吗？

Browser
Server

password

cookie

24

Authentication Problems

• Problems
– Network sniffing

– Malicious or weak-security website
• Phishing

• Common password problem

• Pharming – DNS compromise

– Malware on client machine
• Spyware

• Trojan Horse

Browser
Server

password

cookie

next few slides

Encryption, but key distribution problems

OWF, hashing

25

Password Phishing Problem

• User cannot reliably identify fake sites

• Captured password can be used at target site

Bank A

Fake Site

pwdA
pwdA

26

Common Password Problem

• Phishing attack or break-in at site B reveals pwd at A

– Server-side solutions will not keep pwd safe

– Solution: Strengthen with client-side support

Bank A

pwdA

pwdB

=
 pwdA

Site B

27

Defense: Password Hashing

• Generate a unique password per site
– HMACfido:123(banka.com)  Q7a+0ekEXb

– HMACfido:123(siteb.com)  OzX2+ICiqc

• Hashed password is not usable at any other site
– Protects against password phishing

– Protects against common password problem

Bank A

Site B

pwdA

pwdB

=

28

Outline of Talk

• Definitions

• Passwords

– Unix Passwords

– One time passwords

• Challenge-response techniques

29

One time passwords

• Avoids replay attacks

• Shared lists - pre-distribute list

• Sequentially updated - create next

password while entering current password

• Based on one way functions - Lamport’s

scheme…

30

Lamport’s One Time Passwords

• 1981, by Lamport

• Initialization

– User has a secret w

– Using a OWF h, create the password
sequence:

 w, h(w), h(h(w)),…,ht(w)

– Bob knows only ht(w)

• Authentication：

– Password for ith identification is:

 wi = ht-i(w)

31

S/KEY One-Time Password System

• Based on Lamport’s OTP

• Initialization
– User has a secret: w, seed (non-secret)

– Using a OWF h, create the password sequence:

 w, h(w,seed), h(h(w), seed),…,ht= h(ht-1, seed)

– Bob server knows: seed, Sequence#, ht

• Authentication：

– Password for ith identification is:

 wi = ht-i = h(wi-1, seed)

32

使用seed, Sequence#

• 多个server，Password 可重用(使用不同
seed即可)

• Server 可发起Challenge:

– [seed, sequence#]

33

Attacks on OTPs..

• Pre-play attack - Eve intercepts an

unused password and uses it later

• Make sure you’re giving password to the

right party

• Bob server must be authenticated

34

Shortcomings of OTPs..

• 使用500-1000次需要Reinitialization

–开销不小

• 不支持双向认证

• 保密性没考虑

35

Outline of Talk

• Definitions

• Passwords

– Unix Passwords

– One time passwords

• Challenge-response techniques

– Also “one-time”

36

Challenge-response authentication

• Alice is identified by a secret she possesses

• Bob needs to know that Alice does indeed
possess this secret

• Alice provides response to a time-variant
challenge

• Response depends on both secret and
challenge

• To defense sniffer attack, replay attack

37

Challenge-response authentication

Using

• Symmetric encryption

• One way functions

• Public key encryption

• Digital signatures

38

using Symmetric Key Encryption

• Alice and Bob share a key K

Alice

KA

Bob Server

KA, Kc, Kd, ……

Alice, E(K, Challenge)

Okay

Challenge

39

单向: Using random numbers

• Bob  Alice: rb

• Alice  Bob: EK(rb, B)

• Bob checks to see if rb is the one it sent

out

– Also checks “B” - prevents reflection attack

• rb must be non-repeating

40

单向: Using timestamps

• Time-Based Implicit Challenge

• Alice  Bob: EK(tA, B)

• Bob decrypts and verified that timestamp

is OK

• Parameter B prevents replay of same

message in B  A direction

41

双向: using random numbers

• Bob  Alice: rb

• Alice  Bob: EK(ra, rb, B)

– Alice Challenge Bob

• Bob  Alice: EK(ra, rb)

• Alice checks that ra, rb are the ones used

earlier

42

Shortcomings..

• 多Server, 要和不同的Server共享不同的Key

– Key Distribution ?

– Key management ?

43

Challenge-response authentication

Using

• Symmetric encryption

• One way functions

• Public key encryption

• Digital signatures

44

Challenge-response based on keyed OWFs

• Instead of encryption, used keyed MAC hK

• Check: compute MAC from known

quantities, and check with message

• SKID2 (unilateral), and SKID3(mutual)

45

Mutual authentication using keyed MAC – SKID3

• Bob  Alice: rb

• Alice  Bob: ra, hK(ra, rb, B)

• Bob  Alice: hK(ra, rb, A)

46

Unilateral authentication

using keyed MAC – SKID2

• Bob  Alice: rb

• Alice  Bob: ra, hK(ra, rb, B)

• Same as SKID3 without last exchange

47

Challenge-response authentication

Using

• Symmetric encryption

• One way functions

• Public key encryption

• Digital signatures

48

Authentication based on public key decryption

• Bob  Alice: h(r), B, PA(r, B)

• Alice  Bob: r

Witness to chosen

random r

Challenge to

Alice –

encrypted with

her public key

Alice decrypts challenge to get

r. Checks with h(r). Sends r

back for Bob to check.

49

Mutual Authentication based on PK decryption

• Alice  Bob: PB(rA, B)

• Bob  Alice: PA(rA, rB)

• Alice  Bob: rB

50

Challenge-response authentication

Using

• Symmetric encryption

• One way functions

• Public key encryption

• Digital signatures

51

Unilateral Authentication using Signatures

Alice  Bob: certA, tA, B, SA(tA, B)

Bob checks:

• Timestamp OK

• Identifier “B” is its own

• Signature is valid (after getting public key of

Alice using certificate)

52

Unilateral Authentication using Signatures

Bob  Alice: rB

Alice  Bob: certA, rA, B, SA(rA, rB, B)

Bob checks:

• Identifier “B” is its own

• Signature is valid (after getting public key of

Alice using certificate)

• Signed rA prevents chosen-text attacks

53

Mutual Authentication using Signatures

Bob  Alice: rB

Alice  Bob: certA, rA, B, SA(rA,rB,B)

Bob  Alice: certB, A, SB(rA,rB,A)

