

# Information Security 05

Message authentication and Hash function Chapter 11



#### Review

- Symmetric Cryptography
- Asymmetric Cryptography



**復**2大學软件学院

LiJT



### **Asymmetric Model**



復日大學软件学院

LiJT





• Confidentiality





6

Confidentiality

• enough?



# **Security Requirements**

- disclosure
- traffic analysis
- masquerade
- content modification
- sequence modification
- timing modification
- source repudiation
- destination repudiation



- message authentication is concerned with:
  - protecting the **integrity** of a message
  - validating identity of originator
  - non-repudiation of origin (dispute resolution)
- will consider the security requirements
- then three alternative functions used:
  - message encryption
  - message authentication code (MAC)
  - hash function





• Message vs. Plaintext

• We will not consider Confidentiality sometimes.

Authentication ?



- message encryption by itself also provides a measure of authentication
- if symmetric encryption is used then:
   receiver know sender must have created it
  - since only sender and receiver now key used
  - know content cannot of been altered
  - if message has suitable structure, redundancy or a checksum to detect any changes



(a) Symmetric encryption: confidentiality and authentication

- It may be difficult to determine automatically if incoming ciphertext decrypts to intelligible plaintext
- message should have suitable structure, redundancy or a checksum to detect any changes



(a) Symmetric encryption: confidentiality and authentication

 $\mathbf{A} \to \mathbf{B} \colon \mathbf{E}(K,M)$ 

- Provides confidentiality
  - -Only A and B share K
- Provides a degree of authentication
  - -Could come only from A
  - -Has not been altered in transit
  - -Requires some formatting/redundancy
- Does not provide signature
  - -Receiver could forge message
  - -Sender could deny message

(a) Symmetric encryption

**復**2大學软件学院



- if **public-key** encryption is used:
  - encryption provides no confidence of sender, if the sender uses private key to encrypt the message
  - since anyone potentially knows public-key
- however if
  - sender **signs** message using their private-key
  - then encrypts with recipients public key
  - have both confidentiality and authentication
  - again need to recognize corrupted messages
  - but at cost of two public-key uses on message





(b) Public-key encryption: confidentiality



(c) Public-key encryption: authentication and signature



(d) Public-key encryption: confidentiality, authentication, and signature



 $A \rightarrow B: E(PU_b, M)$ 

Provides confidentiality

-Only B has  $PR_b$  to decrypt

•Provides no authentication

—Any party could use  $PU_b$  to encrypt message and claim to be A

(b) Public-key (asymmetric) encryption: confidentiality

 $A \rightarrow B: E(PR_a, M)$ 

•Provides authentication and signature

- -Only A has  $PR_a$  to encrypt
- -Has not been altered in transit
- -Requires some formatting/redundancy
- —Any party can use  $PU_a$  to verify signature

(c) Public-key encryption: authentication and signature

 $A \rightarrow B: E(PU_b, E(PR_a, M))$ 

•Provides confidentiality because of  $PU_b$ 

•Provides authentication and signature because of PRa

(d) Public-key encryption: confidentiality, authentication, and signature

15



#### Shortcomings of Enc...

• Q: shortcomings of message encryption?



#### Shortcomings of Enc...

- Q: shortcomings of message encryption?
- Cost
  - encrypt the whole message
- Not automatically

### Message Authentication Code (MAC)

- generated by an algorithm that creates a small fixed-sized block
  - depending on both message and some key
    like encryption though need not be reversible
- appended to message as an authenticator
- receiver performs same computation on message and checks it matches the MAC
- provides assurance that message is unaltered and comes from sender



19



as shown the MAC provides authentication

- why use a MAC?
  - sometimes only authentication is needed
  - sometimes need authentication to persist longer than the encryption (eg. archival use)
- note that a MAC is not a digital signature



- can also use encryption for confidentiality
  - generally use separate keys for each
  - can compute MAC either before or after encryption
  - is generally regarded as better done before



THE THE THE



 $A \rightarrow B: M \parallel C(K, M)$ •Provides authentication —Only A and B share K

(a) Message authentication

A → B: E( $K_2$ , [ $M \parallel C(K, M)$ ]) •Provides authentication —Only A and B share  $K_1$ •Provides confidentiality —Only A and B share  $K_2$ 

(b) Message authentication and confidentiality: authentication tied to plaintext

 $\begin{array}{l} A \rightarrow B \colon E(K_2, M) \parallel C(K_1, E(K_2, M)) \\ & \bullet \text{Provides authentication} \\ & - \text{Using } K_1 \\ & \bullet \text{Provides confidentiality} \\ & - \text{Using } K_2 \end{array}$ 

(c) Message authentication and confidentiality: authentication tied to ciphertext

**復** 4 大學软件学院



## **MAC Properties**

a MAC is a cryptographic checksum

 $MAC = C_{K}(M)$ 

- condenses a variable-length message M
- using a secret key K
- to a fixed-sized authenticator
- is a many-to-one function
  - potentially many messages have same MAC
  - but finding these needs to be very difficult



## **Requirements for MACs**

- taking into account the types of attacks
- need the MAC to satisfy the following:
  - 1. knowing a message and MAC, is infeasible to find another message with same MAC
  - 2. MACs should be uniformly distributed
  - 3. MAC should depend equally on all bits of the message



- can use any block cipher chaining mode and use final block as a MAC
- Data Authentication Algorithm (DAA) is a widely used MAC based on DES-CBC
  - using IV=0 and zero-pad of final block
  - encrypt message using DES in CBC mode
  - and send just the final block as the MAC
    - or the leftmost M bits (16≤M≤64) of final block
- but final MAC is now too small for security



#### **Data Authentication Algorithm**





## **Hash Functions**

- condenses arbitrary message to fixed size
   h = H(M)
- usually assume that the hash function is public and not keyed
  - cf. MAC which is keyed
- hash used to detect changes to message
- can use in various ways with message
- most often to create a digital signature

## Hash Functions & Digital Signatures





 a Hash Function produces a fingerprint of some file/message/data

h = H(M)

- condenses a variable-length message M
- to a fixed-sized fingerprint
- assumed to be public



- 1. can be applied to any sized message  ${\tt M}$
- 2. produces fixed-length output  ${\rm h}$
- 3. is easy to compute h=H(M) for any message M
- 4. given h is infeasible to find x s.t. H(x) = h
  - one-way property
- 5. given x is infeasible to find y s.t. H(y) = H(x)
  - weak collision resistance
- 6. is infeasible to find any x, y s.t. H(y) = H(x)
  - strong collision resistance



#### **Apps of Hash Functions**





#### **Apps of Hash Functions**





换.

#### **Apps of Hash Functions**

| $A \rightarrow B: E(K, [M \parallel H(M)])$<br>•Provides confidentiality<br>—Only A and B share K<br>•Provides authentication<br>—H(M) is cryptographically protected               | <ul> <li>A → B: E(K, [M    E(PR<sub>a</sub>, H(M))])</li> <li>•Provides authentication and digital signature</li> <li>•Provides confidentiality<br/>—Only A and B share K</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Encrypt message plus hash code                                                                                                                                                  | (d) Encrypt result of (c) - shared secret key                                                                                                                                        |
| $A \rightarrow B: M \parallel E(K, H(M))$<br>•Provides authentication<br>-H(M) is cryptographically protected                                                                       | $A \rightarrow B: M \parallel H(M \parallel S)$<br>•Provides authentication<br>—Only A and B share S                                                                                 |
| (b) Encrypt hash code - shared secret key                                                                                                                                           | (e) Compute hash code of message plus<br>secret value                                                                                                                                |
| $A \rightarrow B: M \parallel E(PR_a, H(M))$<br>•Provides authentication and digital<br>signature<br>-H(M) is cryptographically protected<br>$-Only A$ could create $E(PR_a, H(M))$ | $A \rightarrow B: E(K, [M \parallel H(M \parallel S]))$<br>•Provides authentication<br>—Only A and B share S<br>•Provides confidentiality<br>—Only A and B share K                   |
| (c) Encrypt hash code - sender's private key                                                                                                                                        | (f) Encrypt result of (e)                                                                                                                                                            |



## **Simple Hash Functions**

- are several proposals for simple functions
- based on XOR of message blocks
   not secure since can manipulate
- need a stronger cryptographic function



- can use block ciphers as hash functions
  - using H<sub>0</sub>=0 and zero-pad of final block
  - compute:  $H_i = E_{M_i} [H_{i-1}]$
  - and use final block as the hash value
  - similar to CBC but without a key
- resulting hash is too small (64-bit)
- other variants also susceptible to attack



# Hash Algorithms

- MD5
- SHA-1
- RIPEMD-160



#### Hash Algorithm Structure



- IV = Initial value
- $CV_i$  = chaining variable
- $Y_i = i$ th input block
- f = compression algorithm

- L = number of input blocks
- n =length of hash code
- b =length of input block



## MD5

- designed by Ronald Rivest (the R in RSA)
- latest in a series of MD2, MD4
- produces a 128-bit hash value
- until recently was the most widely used hash algorithm
  - in recent times have both brute-force & cryptanalytic concerns
  - At the rump session of CRYPTO 2004, she and coauthors demonstrated collisions in MD5 and other related hash functions. A collision occurs when two distinct messages result in the same hash function output. They received a standing ovation for the work.
- specified as Internet standard RFC1321



- SHA originally designed by NIST & NSA in 1993
- was revised in 1995 as SHA-1
- US standard for use with DSA signature scheme

   standard is FIPS 180-1 1995, also Internet RFC3174
   nb. the algorithm is SHA, the standard is SHS
- based on design of MD4 with key differences
- produces 160-bit hash values
- recent 2005 results on security of SHA-1 have raised concerns on its use in future applications

# Revised Secure Hash Standard

- NIST issued revision FIPS 180-2 in 2002
- adds 3 additional versions of SHA – SHA-256, SHA-384, SHA-512
- designed for compatibility with increased security provided by the AES cipher
- structure & detail is similar to SHA-1
- hence analysis should be similar
- but security levels are rather higher



### SHA-512 Overview



**像**里大學软件学院



## **RIPEMD-160**

- RIPEMD-160 was developed in Europe as part of RIPE project in 96
- by researchers involved in attacks on MD4/5
- initial proposal strengthen following analysis to become RIPEMD-160
- somewhat similar to MD5/SHA
- uses 2 parallel lines of 5 rounds of 16 steps
- creates a 160-bit hash value
- slower, but probably more secure, than SHA



- like block ciphers have:
- brute-force attacks exploiting
  - strong collision resistance hash have cost  $2^{m_2}$ 
    - have proposal for h/w MD5 cracker
    - 128-bit hash looks vulnerable, 160-bits better
  - MACs with known message-MAC pairs
    - can either attack keyspace (cf key search) or MAC
    - at least 128-bit MAC is needed for security



- cryptanalytic attacks exploit structure
  - like block ciphers want brute-force attacks to be the best alternative
- have a number of analytic attacks on iterated hash functions
  - $-CV_i = f[CV_{i-1}, M_i]; H(M)=CV_N$
  - typically focus on collisions in function f
  - like block ciphers is often composed of rounds
  - attacks exploit properties of round functions



## Summary

- have considered:
  - message authentication using
    - message encryption
    - MACs
    - hash functions
  - general approach & security
  - Some MACs & hash functions's examples