
1
LiJT

Information Security 12

Software Security
Chapter 3 in Security in Computing,
Charles P. Pfleeger, Shari Lawrence Pfleeger,
Pearson Edition

2
LiJT

Why Software?

• Why is software as important to security as
crypto, access control and protocols?

• Virtually all of information security is
implemented in software

• If your software is subject to attack, your
security is broken
– Regardless of strength of crypto, access control or

protocols
• Software is a poor foundation for security

3
LiJT

What does it mean?

• “secure” program: means different things to
different people

• is it secure if ?
– takes too long to break through security

controls
– runs for a long time without failure
– it conforms to specification
– free from all faults

4
LiJT

Fixing Faults - Testing
• which is better:

– finding and fixing 20 faults in a module?
– finding and fixing 100 faults ' ' ' ?

5
LiJT

Fixing Faults
• which is better:

– finding and fixing 20 faults in a module?
– finding and fixing 100 faults ' ' ' ?

• finding 100 could mean
– you have better testing methods
– OR

• code is really bad
• 100 were just the tip of the iceberg

– software testing literature:
• finding many errors early → probably find many more

6
LiJT

Fixing Faults: penetrate and patch

• think of security after program has been
broken

• release a patch
• why is this bad?

7
LiJT

Fixing Faults: penetrate and patch

• think of security after program has been
broken

• release a patch
• why is this bad?

• eg.
Unicode,MS00-057

入
侵

时间
漏洞
发现

漏洞
分析

补丁
发布

8
LiJT

• why is this bad?
– product was broken in the first place
– developers can only fix problems that they know about
– patches often only fix symptom. they're not cure
– people don't bother applying the patches
– patches can have holes
– patches tell the bad guys where the problems are
– might affect program performance or limit functionality
– more expensive than making it secure from the

beginning

Fixing Faults: penetrate and patch

9
LiJT

Software Issues

Attackers
• Actively look for bugs

and flaws
• Like bad software…
• …and try to make it

misbehave
• Attack systems thru

bad software

“Normal” users
• Find bugs and flaws

by accident
• Hate bad software…
• …but must learn to

live with it
• Must make bad

software work

10
LiJT

Complexity

• “Complexity is the enemy of security”, Paul Kocher,
Cryptography Research, Inc.

Netscape 17,000,000

Space shuttle 10,000,000

Linux 1,500,000

Windows XP 40,000,000

Boeing 777 7,000,000

system Lines of code (LOC)

• A new car contains more LOC than was required to
land the Apollo astronauts on the moon

11
LiJT

Lines of Code and Bugs

• Conservative estimate: 5 bugs/1000 LOC
• Do the math

– Typical computer: 3,000 exe’s of 100K each
– Conservative estimate of 50 bugs/exe
– About 150k bugs per computer
– 30,000 node network has 4.5 billion bugs
– Suppose that only 10% of bugs security-critical and

only 10% of those remotely exploitable
– Then “only” 4.5 million critical security flaws!

12
LiJT

Complete Program Security

• Can we make programs completely secure?
– Not easy

• Why?
– Software testing:

• makes sure that code does what it's supposed to do
– for security: must also verify that it doesn't do

anything it isn't supposed to do. much harder
– programming techniques often change more

quickly than security techniques

13
LiJT

Software Security Topics

• Program flaws (unintentional)
– Buffer overflow
– Incomplete mediation
– Race conditions

• Malicious software (intentional)
– Viruses
– Worms
– Other breeds of malware

14
LiJT

Program Flaws

• An error is a programming mistake
– To err is human

• An error may lead to incorrect state: fault
– A fault is internal to the program

• A fault may lead to a failure, where a system
departs from its expected behavior
– A failure is externally observable

error fault failure

15
LiJT

Secure Software

• In software engineering, try to insure that a
program does what is intended

• Secure software engineering requires that the
software does what is intended…

• …and nothing more
• Absolutely secure software is impossible

– Absolute security is almost never possible!
• How can we manage the risks?

16
LiJT

Program Flaws

• Program flaws are unintentional
– But still create security risks

• We’ll consider 3 types of flaws
– Buffer overflow (smashing the stack)
– Incomplete mediation
– Race conditions

• Many other flaws can occur
• These are most common

17
LiJT

Buffer Overflow-the first enemy
• Cause by bad programming practices
• Most common security vulnerability
– 9 of 13 CERT advisories from 1998
– at least half of 1999 CERT advisories (8/17)
– 18 of 28 CERT advisories from 2003

• Most of the exploits based on buffer overflows
aim at forcing the execution of malicious code.

• Problems
– Access an array without boundary checking
– String specification in C/C++ (end with NULL)

18
LiJT

Typical Attack Scenario

• Users enter data into a Web form
• Web form is sent to server
• Server writes data to buffer, without checking

length of input data
• Data overflows from buffer
• Sometimes, overflow can enable an attack
• Web form attack could be carried out by anyone

with an Internet connection

19
LiJT

Buffer Overflow

• Q: What happens when this is executed?
• A: Depending on what resides in memory at

location “buffer[20]”
– Might overwrite user data or code
– Might overwrite system data or code

int main(){

intbuffer[10];

buffer[20] = 37;}

20
LiJT

Simple Buffer Overflow

• Consider boolean flag for authentication
• Buffer overflow could overwrite flag allowing

anyone to authenticate!

buffer
FTF O U R S C …

Boolean flag

• In some cases, attacker need not be so
lucky as to have overflow overwrite flag

21
LiJT

Memory Organization

• Text == code
• Data == static variables
• Heap == dynamic data
• Stack == “scratch paper”

– Dynamic local variables
– Parameters to functions
– Return address

stack

heap
↓

↑

data

text

← high
address

← low
address

← SP

22
LiJT

程序在内存中的映射（linux）

存放程序代码
和只读数据

存放静态数据

数组字符串等栈

.text段

0xbfffffff

0x80000000

.data段

.bss段

堆

• 栈底

• 栈顶

高地址端

低地址端

ESP

动态分配内存

未初始化静态
变量

23
LiJT

程序在内存中的映射(Win32)

简单变量数组等
0012FEE0

Stack segment

FFFFFH

00000H

Heap segment

• 栈底

• 栈顶

高地址端

低地址端

esp

Code segment 存放程序代码
00401000

动态分配内存
00371010

24
LiJT

函数调用过程示例

2

1

Ret-add

ebp

retVal

…

Stack frame

esp

esp
esp
esp

main ebp

espfunc ebp
esp
esp
esp
esp

esp

25
LiJT

Simplified Stack Example

high →

void func(int a, int b){

char buffer[10];

}

void main(){

func(1, 2);

}

:
:

buffer

ret
a
b

← return
address

low →

← SP

← SP

← SP

← SP

26
LiJT

Smashing the Stack

high →

• What happens if
buffer overflows?

::

buffer

a
b

← ret…

low →

← SP

← SP

← SP

← SP

ret

• Program “returns” to
wrong location

NOT!

???

• A crash is likely overflow
overflow

27
LiJT

Smashing the Stack

high →

• Trudy has a
better idea… :

:

a
b ← SP

← SP

← SP

← SP

ret

low →

• Code injection
• Trudy can run

code of her
choosing!

evil code

ret

28
LiJT

Smashing the Stack

• Trudy may not know
– Address of evil code
– Location of ret on stack

• Solutions
– Precede evil code with

NOP “landing pad”
– Insert lots of new ret

evil code

::

::

ret

ret

:

NOP

NOP
:

ret
← ret

29
LiJT

Stack Smashing Summary

• A buffer overflow must exist in the code
• Not all buffer overflows are exploitable

– Things must line up just right
• If exploitable, attacker can inject code
• Trial and error likely required

– Lots of help available online
– Smashing the Stack for Fun and Profit, Aleph One

• Also heap overflow, integer overflow, etc.
• Stack smashing is “attack of the decade”

http://www.phrack.org/show.php?p=49&a=14

30
LiJT

Stack Smashing Example

• Program asks for a serial number that the
attacker does not know

• Attacker does not have source code
• Attacker does have the executable (exe)

• Program quits on incorrect serial number

31
LiJT

Example

• By trial and error, attacker discovers an
apparent buffer overflow

• Note that 0x41 is “A”
• Looks like ret overwritten by 2 bytes!

32
LiJT

Example

• Next, disassemble bo.exe to find

• The goal is to exploit buffer overflow to
jump to address 0x401034

33
LiJT

Example

• Find that 0x401034 is “@^P4” in ASCII

• Byte order is reversed? Why?
• X86 processors are “little-endian”

34
LiJT

Example

• Reverse the byte order to “4^P@” and…

• Success! We’ve bypassed serial number
check by exploiting a buffer overflow

• Overwrote the return address on the stack

35
LiJT

Example

• Attacker did not require access to the
source code

• Only tool used was a disassembler to
determine address to jump to

• Can find address by trial and error
– Necessary if attacker does not have exe
– For example, a remote attack

36
LiJT

Example

• Source code of the buffer overflow

• Flaw easily
found by
attacker

• Even
without the
source code!

37
LiJT

Stack Smashing Prevention

• 1st choice: employ non-executable stack
– “No execute” NX bit (if available)
– Seems like the logical thing to do, but some real code

executes on the stack (Java does this)
• 2nd choice: use safe languages (Java, C#)
• 3rd choice: use safer C functions

– For unsafe functions, there are safer versions
– For example, strncpy instead of strcpy

• 4th choice: Static source code analysis.

38
LiJT

Stack Smashing Prevention

• Canary
– Run-time stack check
– Push canary onto stack
– Canary value:

• Constant 0x000aff0d
• Or value depends on ret
• random number

• VC++ with /GS compiler flag

←

high →

::

buffer

a
b

overflowret

low →

canaryoverflow

39
LiJT

Buffer Overflow

• The “attack of the decade” for 90’s
• Will be the attack of the decade for 00’s
• Can be prevented

– Use safe languages/safe functions
– Educate developers, use tools, etc.

• Buffer overflows will exist for a long time
– Legacy code
– Bad software development

40
LiJT

Software Security Topics

• Program flaws (unintentional)
– Buffer overflow
– Incomplete mediation
– Race conditions

• Malicious software (intentional)
– Viruses
– Worms
– Other breeds of malware

41
LiJT

Input Validation

• Consider: strcpy(buffer, argv[1])
• A buffer overflow occurs if
len(buffer) < len(argv[1])

• Software must validate the input by checking
the length of argv[1]

• Failure to do so is an example of a more
general problem: incomplete mediation

42
LiJT

Input Validation

• Consider web form data
• Suppose input is validated on client
• For example, the following is valid

http://www.things.com/orders/final&custID=112&num
=55A&qty=20&price=10&shipping=5&total=205

• Suppose input is not checked on server
– Why bother since input checked on client?
– Then attacker could send http message
http://www.things.com/orders/final&custID=112&num
=55A&qty=20&price=1&shipping=5&total=25

43
LiJT

Incomplete Mediation

• Linux kernel
– Research has revealed many buffer overflows
– Many of these are due to incomplete mediation

• Linux kernel is “good” software since
– Open-source
– Kernel ⎯ written by coding gurus

• Tools exist to help find such problems
– But incomplete mediation errors can be subtle
– And tools useful to attackers too!

44
LiJT

Race Conditions

45
LiJT

Race Condition

• Security processes should be atomic
– Occur “all at once”

• Race conditions can arise when security-
critical process occurs in stages

• Attacker makes change between stages
– Often, between stage that gives

authorization, but before stage that transfers
ownership

46
LiJT

Race condition

• Necessary properties for a race condition
– Concurrency property

• At least two control flows executing concurrently
• If not controlled can lead to nondeterministic behavior

– Shared object property
• The concurrent flows must access a common shared race

object

– Change state property
• Atleast one control flow must alter the state of the race object

• Software vulnerability resulting from unanticipated
execution ordering of concurrent flows

47
LiJT

Race window

• A code segment that accesses the race object in
a way that opens a window of opportunity for
race condition
– Sometimes referred to as critical section

• Traditional approach
– Ensure race windows do not overlap

• Make them mutually exclusive
• Language facilities – synchronization primitives (SP)

– Deadlock is a risk related to SP
• Denial of service

48
LiJT

Time-of-Check-To-Time-of-Use

• Source of race conditions
– Trusted (tightly coupled threads of execution)

or untrusted control flows (separate
application or process)

• ToCTToU race conditions
– Can occur during file I/O
– Forms a RW by first checking some race

object and then using it

49
LiJT

Example

• Assume the program is running with an effective
UID of root

• Present in xterm program, while logging sessions

int main(int argc, char *argv[]) {
FILE *fd;
if (access(“/some_file”, W_OK) == 0) {

printf("access granted.\n");
fd = fopen(“/some_file”, "wb+");
/* write to the file */
fclose(fd);

} else {
err(1, "ERROR");

}
return 0;

} Figure 7-1

int main(int argc, char *argv[]) {
FILE *fd;
if (access(“/some_file”, W_OK) == 0) {

printf("access granted.\n");
fd = fopen(“/some_file”, "wb+");
/* write to the file */
fclose(fd);

} else {
err(1, "ERROR");

}
return 0;

} Figure 7-1

50
LiJT

TOCTTOU

• Following shell commands during RW
rm /some_file
ln /myfile /some_file

• Mitigation
– Replace access() call by code that does the following

• Drops the privilege to the real UID
• Open with fopen() &
• Check to ensure that the file was opened successfully

51
LiJT

Temporary file open exploits
• Temporary files

– Unique naming is difficult
– Vulnerable when created in a directory where

attacker has access
– In unix /tmp is frequently used for temporary

files
– Simple vulnerability

int fd = open(“/tmp/some_file”,
O_WRONLY |
O_CREAT |
O_TRUNC,
0600)

int fd = open(“/tmp/some_file”,
O_WRONLY |
O_CREAT |
O_TRUNC,
0600)

Already exists or what if the
/tmp/some_file is a symbolic
link before the instruction is
executed?

Solution:
add O_EXCL flag

File existence check and
creation -> atomic!

Already exists or what if the
/tmp/some_file is a symbolic
link before the instruction is
executed?

Solution:
add O_EXCL flag

File existence check and
creation -> atomic!

52
LiJT

Source: Bishop and Dilger’s 1996 paper in
Computing Systems

53
LiJT

Race Conditions

• Race conditions are common
• Race conditions may be more prevalent than

buffer overflows
• But race conditions harder to exploit

– Buffer overflow is “low hanging fruit” today

• To prevent race conditions, make security-
critical processes atomic
– Occur all at once, not in stages
– Not always easy to accomplish in practice

54
LiJT

Race detection tools

• Static analysis
– Parses software to identify race conditions
– Warlock for C (need annotation)
– ITS4 uses (database of vulnerabilities)
– RacerX for control-flow sensitive interprocedural analysis
– Flawfinder and RATS – best public domain

• Extended Static checking
– Use theorem proving technology

• Race condition detection is NP complete
– Hence approximate detection
– C/C++ are difficult to analyze statically –

• pointers and pointer arithmetic
• Dynamic dispatch and templates in C++

55
LiJT

Software Security Topics

•• Program flaws (unintentional)Program flaws (unintentional)
–– Buffer overflowBuffer overflow
–– Incomplete mediationIncomplete mediation
–– Race conditionsRace conditions

• Malicious software (intentional)
– Viruses
– Worms
– Other breeds of malware

56
LiJT

• Malware which spread from machine to
machine without the consent of the
owners/operators/users
– Windows Automatic Update is (effectively) consensual

• Many strains possible
– Viruses
– Worms
– Compromised Auto-updates

• No user action required, very dangerous

Malware

57
LiJT

Type of Malware (lots of overlap)

58
LiJT

Trapdoors (Back doors)

• Secret entry point into a program
• Allows those who know access bypassing usual

security procedures, e.g., authentications
• Have been commonly used by developers
• A threat when left in production programs

allowing exploited by attackers
• Very hard to block in O/S
• Requires good s/w development & update

59
LiJT

Logic Bomb

• One of oldest types of malicious software
• Code embedded in legitimate program
• Activated when specified conditions met

– E.g., presence/absence of some file
– Particular date/time
– Particular user
– Particular series of keystrokes

• When triggered typically damage system
– Modify/delete files/disks

60
LiJT

Trojan Horse

• Programs that appear to have one
function but actually perform another.

• Modern Trojan Horse: resemble a
program that the user wishes to run -
usually superficially attractive
– E.g., game, s/w upgrade etc

• When run performs some additional
tasks
– Allows attacker to indirectly gain

access they do not have directly
• Often used to propagate a virus/worm

or install a backdoor
• Or simply to destroy data

61
LiJT

Zombie

• Program which secretly takes over another
networked computer

• Then uses it to indirectly launch attacks
• Often used to launch distributed denial of

service (DDoS) attacks
• Exploits known flaws in network systems

62
LiJT

Malware Timeline

• Preliminary work by Cohen (early 80’s)
• First Wild Viruses
• Brain virus (1986)
• Morris worm (1988)
• Destructive Virus: CIH
• Code Red (2001)
• SQL Slammer (2004)
• Future of malware?

63
LiJT

First Wild Viruses, on Apple 1981

• Three viruses for the Apple machines emerged
in 1981
– Boot sector viruses

• Floppies of that time had the disk operating
system (DOS) on them by default
– Wrote it without malice

64
LiJT

Brain

First appeared in 1986
More annoying than harmful
A prototype for later viruses
Not much reaction by users
What it did

1. Placed itself in boot sector (and other places)
2. Screened disk calls to avoid detection
3. Each disk read, checked boot sector to see if boot sector

infected; if not, goto 1

Brain did nothing malicious

65
LiJT

Morris Worm

• First appeared in 1988
• What it tried to do

– Determine where it could spread
– Spread its infection
– Remain undiscovered

• Morris claimed it was a test gone bad
• “Flaw” in worm code ⎯ it tried to re-infect

infected systems
– Led to resource exhaustion
– Adverse effect was like a so-called rabbit

66
LiJT

Morris Worm

• How to spread its infection?
• Tried to obtain access to machine by

– User account password guessing
– Exploited buffer overflow in fingerd
– Exploited trapdoor in sendmail

• Flaws in fingerd and sendmail were well-known
at the time, but not widely patched

67
LiJT

Morris Worm

• Once access had been obtained to machine…
• “Bootstrap loader” sent to victim

– Consisted of 99 lines of C code
• Victim machine compiled and executed code
• Bootstrap loader then fetched the rest of the

worm
• Victim even authenticated the sender!

68
LiJT

Morris Worm

• How to remain undetected?
• If transmission of the worm was interrupted, all

code was deleted
• Code was encrypted when downloaded
• Downloaded code deleted after decrypting and

compiling
• When running, the worm regularly changed its

name and process identifier (PID)

69
LiJT

Result of Morris Worm

• Shocked the Internet community of 1988
– Internet of 1988 much different than today

• Internet designed to withstand nuclear war
– Yet it was brought down by a graduate student!
– At the time, Morris’ father worked at NSA…

• Could have been much worse ⎯ not malicious
• Users who did not panic recovered quickest
• CERT began, increased security awareness

– Though limited actions to improve security

70
LiJT

Destructive Virus: Chernobyl (1998)

• Designed to inflict harm
– Flash BIOS: would cause permanent hardware

damage to vulnerable motherboards
– Also overwrote first 2K sectors of each disk

• Typically resulted in a loss of data and made it unbootable

• Previously believed that being benign was
necessary for virus longevity
– Chernobyl provided evidence to the contrary

71
LiJT

Code Red Worm
• Appeared in July 2001
• Infected more than 250,000 systems in about 15

hours
• In total, infected 750,000 out of about 6,000,000

susceptible systems
• Exploited buffer overflow in Microsoft IIS server

software
• Then monitored traffic on port 80 for other

susceptible servers

72
LiJT

Code Red Worm
• What it did

– Day 1 to 19 of month: tried to spread infection
– Day 20 to 27: distributed denial of service attack on
www.whitehouse.gov

• Later versions (several variants)
– Included trapdoor for remote access
– Rebooted to flush worm, leaving only trapdoor

• Has been claimed that Code Red may have been
“beta test for information warfare”

73
LiJT

SQL Slammer

• Infected 250,000 systems in 10
minutes!

• Code Red took 15 hours to do what
Slammer did in 10 minutes

• At its peak, Slammer infections doubled
every 8.5 seconds

• Slammer spread too fast
• “Burned out” available bandwidth

74
LiJT

Outlines

• Mobile malcode Overview
• Viruses
• Worms

75
LiJT

Viruses
• Definition from RFC 1135: A virus is a piece of code

that inserts itself into a host, including operating
systems, to propagate. It cannot run independently.
It requires that its host program be run to activate it.

• On execution
– Search for valid target files

• Usually executable files
• Often only infect uninfected files

– Insert a copy into targeted files
• When the target is executed, the virus starts running

• Only spread when contaminated files are moved
from machine to machine

• Mature defenses available

76
LiJT

Virus Operation

• virus phases:
– dormant – waiting on trigger event
– propagation – replicating to programs/disks
– triggering – by event to execute payload
– execution – of payload

• details usually machine/OS specific
– exploiting features/weaknesses

77
LiJT

Where do Viruses Live?

• Just about anywhere…
• Boot sector

– Take control before anything else
• Memory resident

– Stays in memory
• Applications, macros, data, etc.
• Library routines
• Compilers, debuggers, virus checker, etc.

– These are particularly nasty!

78
LiJT

Virus -- Macros
• Usually executable files: .com, .exe, .bat
• Macro code attached to some data file
• Interpreted by program using file

– E.g., Word/Excel macros
– Especially using auto command & command macros

• Code is now platform independent
• Is a major source of new viral infections
• Blur distinction between data and program files
• Classic trade-off: "ease of use" vs "security”
• Have improving security in Word etc
• Are no longer dominant virus threat

79
LiJT

Variable Viruses

• Polymorphic viruses
– Change with each infection

• Executables virus code changing (macros: var name, line
spacing, etc.)

• Control flow permutations (rearrange code with goto’s)

– Attempt to defeat scanners
• Virus writing tool kits have been created to

"simplify" creation of new viruses

80
LiJT

Outlines

• Mobile malcode Overview
• Viruses
• Worms

81
LiJT

Worms

• Autonomous, active code that can replicate to
remote hosts without any triggering
– Replicating but not infecting program

• Because they propagate autonomously, they can
spread much more quickly than viruses!

• Speed and general lack of user interaction make
them the most significant threats

• using users distributed privileges or by exploiting
system vulnerabilities

• subsequently used for further attacks

82
LiJT

What is a worm?

Self propagating
malcode.

Exponential speed.

So far, Internet
topology is not well
exploited.

83
LiJT

+

AttackerTarget
Discovery

Carrier

Activation

Payload

Worm Overview

84
LiJT

Target
Discovery

• Port Scanning
• Sequential: working through an address block

• Random

•Target Lists
• Externally generated through Meta servers

• Internal target list

• Passive worms

85
LiJT

Internal Target Lists: Topological Information

• Look for local information to find new targets
– URLs on disk and in caches
– Mail addresses
– .ssh/known_hosts

• Ubiquitous in mail worms
– More recent mail worms are more aggressive at

finding new addresses
• Basis of the Morris worm (1988)

– Address space was too sparse for scanning to
work

86
LiJT

Passive Worms

• Wait for information about other targets
E.g., CRclean, an anti-CodeRed II worm
– Wait for Code Red, respond with counterattack
– Remove Code Red II and install itself on the machine

• Speed is highly variable
– Depends on normal communication traffic

• Very high stealth
– Have to detect the act of infection, not target selection

87
LiJT

Carrier
• Self-Carried

Transmit itself as part of the infection process

• Second Channel
E.g. blaster worm use RPC to exploit, but use TFTP to

download the whole virus body

88
LiJT

Activation

89
LiJT

Activation

• Human Activation
– Needs social engineering, especially for email worms

• Melissa – “Attached is an important message for you!”
• Iloveyou – “Open this message to see who loves you!”

• Human activity-based activation
– E.g. logging in, rebooting (Nimda’s secondary propagation)

• Scheduled process activation
– E.g. updates, backup etc.

• Self Activation
– E.g. Code Red exploit the IIS web servers

90
LiJT

Payload

91
LiJT

Payloads
• None/nonfunctional

– Most common
– Still can have significant effects through traffic and

machine load (e.g., Morris worm, Slammer, …)

• Internet Remote Control
– Code Red II open backdoor on victim machines: anyone

with a web browser can execute arbitrary code
• Internet Denial of Service (DOS)

– E.g., Code Red, Yaha
• Data Collection
• Data Damage: Chernobyl , Klez
• Worm maintenance

92
LiJT

Attacker

• Experimental Curiosity, e.g., I Love You worm

• Pride and Power

• Commercial Advantage

• Extortion and Criminal Gain

• Terrorism

• Cyber Warfare

93
LiJT

A little history

Morris Worm
11/02/88
A lot of hosts

Code Red
07/19/01
A lot of hosts

Code Red II
08/06/01
A lot of hosts

Witty
~12000 systems

Benign effects:
• SQL Slammer congests the
network
• Morris worm crashes hosts
• … …

Blaster
8/11/03
A lot of hosts

SQL Slammer
01/25/03
A lot of hosts

Destructive effects:
• Code Red defaces web pages
• Witty overwrites a random disk
block
• … …

94
LiJT

The Spread of the SQL Slammer Worm

95
LiJT

How Fast was Slammer?

• Infected ~75,000
machines
in 10 minutes

• Full scanning rate in ~3
minutes
– >55 Million IPs/s

• Initial doubling rate was
about every 8.5 seconds
– Local saturations

occur in <1 minute

96
LiJT

Malware Detection

• Three common methods
– Signature detection - Look for patterns
– Change detection - Integrity Checking
– Anomaly detection - Look for bad behavior

• We’ll briefly discuss each of these
– And consider advantages and disadvantages of

each

97
LiJT

Signature Detection

• A signature is a string of bits found in software
(or could be a hash value)

• Suppose that a virus has signature
0x23956a58bd910345

• We can search for this signature in all files
• If we find the signature are we sure we’ve

found the virus?
– No, same signature could appear in other files
– But at random, chance is very small: 1/264

– Software is not random, so probability is higher

98
LiJT

Signature Detection

– Advantages
– Effective on “traditional” malware
– Minimal burden for users/administrators

– Disadvantages
– Signature file can be large (10,000’s)…
– …making scanning slow
– Signature files must be kept up to date
– Cannot detect unknown viruses
– Cannot detect some new types of malware

– By far the most popular detection method

99
LiJT

Change Detection

• Viruses must live somewhere on system
• If we detect that a file has changed, it may be

infected
• How to detect changes?

– Hash files and (securely) store hash values
– Recompute hashes and compare
– If hash value changes, file might be infected

100
LiJT

Change Detection

• Advantages
– Virtually no false negatives
– Can even detect previously unknown malware

• Disadvantages
– Many files change ⎯ and often
– Many false alarms (false positives)
– Heavy burden on users/administrators
– If suspicious change detected, then what?
– Might still need signature-based system

101
LiJT

Anomaly Detection

• Monitor system for anything “unusual” or
“virus-like” or potentially malicious

• What is unusual?
– Files change in some unusual way
– System misbehaves in some way
– Unusual network activity
– Unusual file access, etc., etc., etc.

• But must first define “normal”
– And normal can change!

102
LiJT

Anomaly Detection

• Advantages
– Chance of detecting unknown malware

• Disadvantages
– Unproven in practice
– Trudy can make abnormal look normal (go slow)
– Must be combined with another method (such as

signature detection)
• Also popular in intrusion detection (IDS)
• A difficult unsolved (unsolvable?) problem

– As difficult as AI?

103
LiJT

Future of Malware

• Polymorphic and metamorphic malware
• Fast replication/Warhol worms
• Flash worms, Slow worms, etc.
• Future is bright for malware

– Good news for the bad guys…
– …bad news for the good guys

• Future of malware detection?

	Information Security 12�
	Why Software?
	What does it mean?
	Fixing Faults - Testing
	Fixing Faults
	Fixing Faults: penetrate and patch
	Fixing Faults: penetrate and patch
	Software Issues
	Complexity
	Lines of Code and Bugs
	Complete Program Security
	Software Security Topics
	Program Flaws
	Secure Software
	Program Flaws
	Buffer Overflow-the first enemy
	Typical Attack Scenario
	Buffer Overflow
	Simple Buffer Overflow
	Memory Organization
	程序在内存中的映射（linux）
	程序在内存中的映射(Win32)
	函数调用过程示例
	Simplified Stack Example
	Smashing the Stack
	Smashing the Stack
	Smashing the Stack
	Stack Smashing Summary
	Stack Smashing Example
	Example
	Example
	Example
	Example
	Example
	Example
	Stack Smashing Prevention
	Stack Smashing Prevention
	Buffer Overflow
	Software Security Topics
	Input Validation
	Input Validation
	Incomplete Mediation
	Race Conditions
	Race Condition
	Race condition
	Race window
	Time-of-Check-To-Time-of-Use
	Example
	TOCTTOU
	Temporary file open exploits
	Race Conditions
	Race detection tools
	Software Security Topics
	Malware
	Type of Malware (lots of overlap)
	Trapdoors (Back doors)
	Logic Bomb
	Trojan Horse
	Zombie
	Malware Timeline
	First Wild Viruses, on Apple 1981
	Brain
	Morris Worm
	Morris Worm
	Morris Worm
	Morris Worm
	Result of Morris Worm
	Destructive Virus: Chernobyl (1998)
	Code Red Worm
	Code Red Worm
	SQL Slammer
	Outlines
	Viruses
	Virus Operation
	Where do Viruses Live?
	Virus -- Macros
	Variable Viruses
	Outlines
	Worms
	What is a worm?
	+�
	Internal Target Lists: Topological Information
	Passive Worms
	Activation
	Payloads
	A little history
	The Spread of the SQL Slammer Worm
	How Fast was Slammer?
	Malware Detection
	Signature Detection
	Signature Detection
	Change Detection
	Change Detection
	Anomaly Detection
	Anomaly Detection
	Future of Malware

