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ABSTRACT

The option pricing problem is examined in its simplest
nontrivial setting-—the uncertainty of- the underlying stock
price reduced to di;crete binomial movements. Using only ele-
mentary mathematics, this leads to a binomial option pricing
formula, which contains the Black-Scholes an& jump-process for-
mulas as special limiting cases. The discrete binomial formula
illuminates the economic in;uition behind option pricing theory,
without any sacrifice of generaiity compared to the Black-S5choles
analysis. Moreover, the binomial formulationm, by its very con-
struction, gives rise to a simple and efficilent numericai pro-
cedure for valuing options for which premature exercise may be .

desirable.



I. INTRODUCTION

The original derivation of_a‘satisfactory exact option pricing
formula was first published in the Journal of Policital Economy, May
1973, in an article written by Fischer Bléck and Myron Scholes entitled
"The Pricing Of Options and Corporate Liabilities." They specifically .
examined ordinary put and call options. A call 1s an option to buy a
fixed number of shares of a specified common stock at a fixed price at
any time until a fixed date.lh A put 1is similar, except it is an option
to sell.shares. The fixed price 1s termed thé "striking price,'” and the
fixed date, the "expiration date." It is common to distinguish options
which can be exercised at any time prior to expiration (American options)
from those which can only be exercised at expiration (European options).
Although the Black—Scholeé paper dealt directly only with European op-
tions, it has béen possible to extend thelr appreoach to value American
options as well. Unless otherwise indicated, this paper will likewise
pertain to American options, of the type now traded on organized option
markets in the United States.

If option pricing theory were confined to the valuation of ordi-
nary puts and calls, desplte recent instituvonal developments, it would
not have attracted widespread academic attention. As Black and Scholes them—

selves mentioned, wirtually all corporate securities can be fruitfully

1A call should not be confused with a futures contract. The lat-
ter represents a commitment to buy or sell (i.e., on its expiration date,
a future must be "exercised").



interpreted as portfolios of puts and calls.1 Moreover, option pricing

theory applies to a very general class of economic problems—the valuation
of doqtracts where the outcbme to each party dependé on a quantifiable un-
certain future event.

Unfortunately, the mathematical tools employed in the article are
quite advanced, and have served to obscure the underlying éconOmics. HAW-

ever, thanks to a suggestion of William Sharpe, it is possible to derive

the Black-Scholes formula using only elementary mathematics. This is

done by treating the option pricing problem in its simplest noﬁtrivial
setting;-the uncertainty of the underlying stock price feduced to discrete
binomial movements.2 One of the conclusions of our paper 1s that the re-
sulting discrete binomial option pricing formula illuminates the economic
intuition behind option pricing theory, without any sacrifice in general-
ity compared to the Black-Scholes analysis.

Not only is.thé binomial formula of iInterest in itself, buththe
formula lies at the fork of tﬁé significant limiting cases--the Black-
Scholes continuous stochastie ﬁrocess formula, and the Cox-Ross [1976]
jump stochastic process formula. As we shall show, each c;n Be derived

from the binomial formula by taking the appropriate limits.

) lTo take an elementary case, consider a firm with a single liabil-
ity of a homogeneous class of pure discount bonds. The stockholders then
have a '"call" on the assets of the firm which they can choose to exercise
at the maturity date of the debt by paying ite principal teo the bondhold-
ers. In turn, the bonds can be interpreted as a portfollo of a written
put on the assets of the firm and a default-free loan with the same face
value as the bonds. o . -

2
?harpe has partially developed the-binomial approach to option
pricing in his recent book Invegtments, Prentice-Hall, 1978. Rendleman

and Bartter [1977] have also independently discovered the binomlal formu-
lation of the option pricing problem.



Other more general option pricing problems seem immme to reduction

to a simple formula. Instead, numerical ﬁrocedures must often. be employed

to price these more complex options. Following the approach of Michael
Brennan and Edwardo Schwartz [1977), the Black-Scholes differential
hedging equation is first reduced to a discrete-time difference equation

and then the option price is obtained by somewhat elaborate numerical pro-

cedures. In contrast, the binomial formulation, by its very construction,
gives rise to an alternative numerical procedure which is both far simpler

and, for many purpeses, computationally more efficient;



II. THE BASIC IDEA

Suppose the current price of an underlving stock 1s $=§50, and

at the end of a periad ot time, its ptlee st either e 03 =30 0y

S*%=35100. A call1 on the stock is availéble with a striking price of
K=$50, expiring at the end of the period. It is also possible to bor—
row and lend at a 25% vate of interest. The one plece of information
left unfurnished is the current price C of the call. Hpwever, if
riskless profitable arbitrage is not possible, we can deduce from the

given infermation alone what the price of the call must be!

Consider forming the follbwing levered hedge:

(1) write 3 calls at C each,
(2) buy 2 shares at $50 each, and

(3) borrow $40 at 25%, to be paid
back at end of period.

Table 1 gives the return from this hedge, for each possible’level of
the stock price at expiration. Regardless of the outcome, the hedge
exactly breaks even or the expiration date. Therefore, to prevent

profitable riskless arbitrage, its current value must be zero; chat is,
~3C + 100 - 40 = 0 .

The current value of the cazll must then be C=520.

1

To keep matters simple, assume for now thar the call is protected
against cash dividends. We also ignore transactious costs, margin, and
taxes. )



Table 1. Arbitragé Table Illustrating the
Formation of a Riskless Hedge

Present Expiration Date

Date Sk=25 §*=100
Write 3 calls‘ -3C L 150
Buy 2 shares 100 " 50 200
Borrow ~40 50 _so
Total - L

If the call were not priced at $20, a sure profit would be pés—
sible. In particular, if C=$25, the above hedge would yield a current
cash inflow of $15 and would experience no further gain or loss in the
future. On the other hand, if C=3$15, then the same thinglgould be ac-
complished by buying 3 calls, selling short 2 shares, and lending $40.

Table 1 can be interpreted as demonstrating that an.gppropri-
ately levered posttion in étock will replicate the future returns of a
call. That is, if we buy shares anq borrow against them in the right
proportion, we can, in effect, duplicate a pure position in calis. In
view of this, it should seem less surprising that all we needed to de-
termine the exact value of the call was its striking price, undeflying_
stock price, range of movement in the wmderlying stock price, and the
rate of interest. What may seem more incredible is what we don't neeﬁ

to know: among other things, we don't need to know the pvobability that



the stock price will rise or fall. Bulls and bears must agree on the
value of the call, relative to its underlying stock price!

Clearly, our numerical example has been chosen for simplicity, not,
realism. Among other things, it gives no consideration to the existing
liquid secondary market, which permits closing transactions any time
Priotr to expiration, and it posits very unvead Uit iv sitock 1 Do oy
ments. As it turns out, correcting the former deficiency supplies the

key to correcting the latter.

ITII. BINOMIAL OPTION PRICING FORMULA

To model the value of a call prior to expiration, we start with
the simplest nontrivial situation. Suppose the expiration date is just
one "period” away. Denoting the current stock pricé as S, we assume it
follows a binomial process so that at the end of the period at ;he ax-—
piration of the call, its pfice is either uwS or dS, with probability

Q@ and 1-gq, respectively. Therefore,

uS with probability g

dS with probability 1-g

Letting r denote one plus the interest rate over the period, we
require u>r>d, If these inequalities did not hold, there would be

profitable riskless arbitrage opportunities involving only the stock and

riskless borrowing and lending. .Although we could simplify the éxample- |



further by setting d==u'_l and q=.5, we choose to retain this greater

level of generality.

When the call expires, we know that its contract and a rational

exercise policy imply that its value must eilther be Cu max[0,us - K]

or C4 = max[0,d5 -K]. Therefore,

9]
It

= max[0,uS -~ K] with probability g

(9]
N

= max[0,d5-K] with probability 1l-q

Suppose we form a hedge at the beginning of the period by writing
one call against o shares of stock. This would cost ©S-C. The buyer

of the call will either retain it until expiration or exercise it immed-

iately. This will depend on which is higher; the retention value or the
exercise value, max[0,5-K]. To find out, we will first calculate the
value of the call if he retains it. If the call.is unexercised, then our

hedge will return

au§ - C, with probability g

as-C

adS ~C, with probability 1-q

d

Now, since we can choose o any way we wish, suppose we select the "neu-
tral" hedge ratio, that 1s, the o that makes the hedge riskless., We ac-

complish this by selecting the « which equates the dollar returns in the

two possibilities:



_Ol.dS--Cd=0‘-l-lS—Cu._

Solving this eﬁuarion, the hedge ratio Q@ which eliminates all risk is:

A

With this hedge ratio, since the return from the hedge, adS - G,
is riskless, to prevent riskless profitable arbitrage, it must have the
same return as an investment of a8-C dollars in riskless borrowing or

lending. Therefore,
odS - Cd = r{@S-C) .

Rearranging this equality and substituting for a,

T —=d u-r
= 4 - .
rC (u—d) Cu (u-d Cd

To state this more siwply, observe that defining p = ru:ccll , then
_u-r

l1-p a-d Therefore,

(1) c = [pCu+ (l—p)Cd] s r

‘This is the exact formula for the value of a call one period prior to ex-
piration in terms of 8, K, u, d, and r.
The formula gives the value of the call if, as we assumed, the

buyer does not immedjately exercise it. However, 1t is easy to see that



as long as the interest rate is not negative (i.e., r>1), premature ex-
ercise 1s not optimal. To see this, suppose the worst, that u3>K an@

dS<K. Then, 1f he does not exercise immediately,l
c={p max[0,u5 -K] + (1-p)m§1x[0,d3_—K]} +tr = IE%] (uS -K) .
Cur problem is to prove:

[.f'?] (uS-K) >S - K ,

the money lhe would receive if he exercised immediately. A little algebra
easily confirms this inequality. Since it is then not optimal to exercise
the call, formula (1) is unambiguously its correct value one period prior

to expiration.

This formula has a number of notable features. First, the only
assumption imposed on investor behavior is the motivation to eliminate
all opportunities for profitable riskless arbitrage. For example, in-
vestors can be risk-averse or risk-preferring, and we would derive the
same formula. The assumption that no profirable riskless arbitrage oppor-
tunities exist is particularly acceptable frpm a practical point of view,
since we gain whether i;-is true or false. If it is true, we have ex-
plained call prices; if it is false, we will be the first to take advan-
tage of its falsity by transacting in the market.

Second, probability q does not appear 1n the formula. This
means, surprisingly, that even if different investors have different subj

jective probabilities about an upward or downward movement in the stock
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price, they would still agree on the relationship of ¢ to § and t.

This can be understood if it is remembered that the formula is only a
relgtive pricing relationship between € on one side and S and Tt on
the other. The prébability, q will affect the values of S and r apd,
only transmitted through them, will ﬁﬁdirectly affect the wvalue of C.
Third, p = (r-d)/(u-d) has all the properties of a probebility‘

reasure: that is, O0<p<l. However, p is generally not a subjective

probability (i.e., a probability in an investor's mind). Indeed, to re-
quire p to be a subjective probability would unnecessarily restrict the
context of the formula. The current call value would then be eqﬁal to

its expected future value discounted at the riskless rate with no adjust-
ment for risk. Only if investors were risk-neutral or the risk of the
call costlessly eliminated by diversification would such an interpretation
be reasonable. WNonetheless, and this will be important subsequently, the
same formula for € in terms of §, K, u, d, and r holds even if ﬁe in-
terpret p as a subjective_probability} That is, had we made-this inter—
pretation initially, we would not have been misled, since we wo;ld have
derived the same formula. Even in a risk-averse or risk—préfefence envi-
ronment, the rélationship of C to S, K, u, d, and r would be deter—
mined as if investors were risk-neutral, Incidentally, if investors were

risk-neutral, then q=p. To see this, since then
q(us) + (1-q)(dS) = r§
then

'q = (r-d)/(u-d) =p.
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Finally, the only random variable the call value depends upon
is the stock price itself. In particulér, it does not depend, in addi-
tion, on the random prices of other securities or portfolios, such as the
"market" povtiolio containing all securities in the economy. Indeed, if
c depeﬁded separately on some other random variable, since its price
would then be different than formula (1), we know from the deriﬁation of
this formula that profitable riskless arbigrage_would be possible.

In reality, we can sell or exercise a call at many dates prior to
its expiraction. Stepping backward one morc perind, we will now examine
what happeas to the call value two periods before expiration. In keeping

with our binomial stochastic process, for the stock:

u25
us

S 2 >dus
ds

dZS

In other words, S follows a stationary random binomial process with
step size u or d with probability q or 1-q, respectively. Addition-
ally, we assume one plus the interest rate r is stationary pericd to

period. Then, for the call:
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cC = max[O,uzs-K]
uu . -

c Z>¢. = max[0,dus - K]

\ = 2
cdd = max[0,d°5 - K]

From our previous analysis with one period left, applying formula (1),

" [PCuu + (1-p)Cud]/r and C

4= [PCdu + (1-p)Cy l/r

Again we construct a riskless hedge at the beginning of the first
period by choosing ¢ so that, investing «aS8-C, we are certain to receive
adS-—Cd = auS—-Cu. Following the same reasoning as before, to prevent |
profitable riskless arbitrage, again C = [pCLl +‘(l—-p)Cd]/r. Substitut-

ing in the above equations for CLl and 'Cd’
2 . 2 . L2
(2) c=1[pcC +2p(l-p)c + (1-P)C ] +r .
uu ud dd .
Note that C =C ,. Agaln, we can use thls and compare it to S§-X Lo

du ud

show that the call will not b% exercilised prematurely. ‘Mnreover, all other
observations made about formula (1) also apply to Eormula {2), 'except Ehat
the number of periods n remaining to expiration now emerges clearly: as
an additional determinant of the call value. For formula (2}, n=2.

That is, the ful}l list of varlables determining € 1is S, n, K, u, d,

and r.
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Working backward in time deductively, we can write down the general

" pricing formula for any r'n:

n

(3) C = E n!

s j - n"j j n_-j N . o
j=oj!(““j)! p” (1-p) max[0,u’d ~§ 1{]} L

-1 2 n-2
since d"S < ud™ 'S < ud" 5 < .., < unS, presuming the option will not
explire in-the~money for sure, or out-of-the-money for sure, there must -

exist an Iinteger 0 < a < n, such that

Brlgnm(ambg ooy < %" %s .

For all j<a, max[O,qun_JS—K] = 0 and for all j>a, max[D,qun_JS—K]

= wd™ s~ K. Therefore,

n

[}
1

n . ..
E I(n Dt PJ(l"P)n—J[UJdn-JS"K]} Tr

We can solve for a by taking natural logarithms cf the above inequality.

Thus, a is an integer such that

In(K/SdY 4 4 Wn(R/5dY)
1n{u/d) — " In{u/d)
Breaking up € intc two terms
S I n Y . .
= R ot B d _ -1 n! Jey_y03 |
3 C=S5 JZ T p3 (1-p) o Kr jza T e
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Now, the latter bracketed expression is the complementary binomial dis—
tribution function1 Bla; u,p] . The first bracketed expression can also.

be interxpreted as a complementary binomial distribution function

Blayn, p'], where

P' 2 (u/x)P and 1-P' = (a/t)(1-P)

p' 1is a probability measure, since 0<p'<1l, To see this,

. . igei Ir, L .
pd(1-p"I - |}‘" P] [—; (1—p£l = p-pn™ .
r

r

In summary:

BINOMIAL OPTION PRICING FORMULA

C = SB[a3n,P'] - Kr "B[a;n, p]
where

p= (r-d)/(u-d) and P' = (u/T)p

1n(k/Sd™) 1n(x/sd")
In(u/d) ~2 <1+ owrd

where a i1s an Ilnteger.

lCaution: Despite this, P 1s only a probability measure and not
to be Interpreted necessarily as a subjective probability. :
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Before analyzing this formula in detail, we should mention an al-
ternative shortcut derivation.l Suppuse the cali value C depends on
the concurrent stock price Sn and the number of periods n remaining
to expiration. We express the call value as C(Sn ,N}. As befo;é, we

can set up a riskless hedge and derive

c(s_,n) = [PC(uSn,n—l) + (1- P)C(dsn,n—l)] T,

where, at n=20, C(SO,O) =-max[0,SO-K]. Since this relationship does
pot involve investor attitudes toward risk, it must be true regardless
of what attitudes we assume. For computational purposes, the most con-
venient choice is risk neutrality. In this c#se, present values are just_
expected future values discounted back to the present at the riskless in-
terest rate. Since the stock is assumed not to pay dividends, it would

never be optimal to exercise the call before its expiration date. There-
fore, with risk neutrélity, its éreéent value must.-be its expected value

on its expiration date discounted back to the present. Recall from our

previous discussion, SOI= wlg™ g and, with risk neﬁtrality, q=7p-
Since
E{max[0, SO -K1}
C = s
,
r

we can then derive equation (3). The proof then proceeds as before.
For some readers, an alternative "complete markets' interpreta-
tion of our binomial approach may be instructive. Suppose that T  and
u

“d represent the state-contingent discount rates to states u and d,
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respectively. Therefore, ﬂu would be the current price of one dollar
received at the end of the period, if and only if state u occurs. Each
security--a riskless bond, the stock, and the option must all havg re—l
turns discounted to the presenﬁ by ﬂu and ﬂd if no riskless arbi—,.

trage opportunities are available. Therefore,

=T r+

1 ur ﬂdr ,

S =1 (u8) + 7_(d8) , and
u d

cC =

c <+ c. .
1Tu u 1Td d

The first two equations, for the bond and the stock, imply

_ [(xr—-d\1 . fu-ril
T (u—d)r and Ty (u—d)r'

Substituting these equalities for the state~contingent prices in the last

equation for the option yields equation (1).

It is important to realize that we are not assuming that the risk-
less bond and the stock and the option are the only three "securities in
the economy, or that other securities must follow a binomial process.
Rather, however these securitiﬁs are priced in relation_to othérs in
"equilibrium, among themselves they must conform to the above relation-
ships.

From elther the hedging or complete markets approaches, it shoﬁld
be clear that three-state or trinomial stock price movements will not

lead to an option pricing formula solely based on arbitrage considerations.
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Suppose, for example, over each period the stock price elther moved to
uS, dS, or remained the same at S. A hedge ratio which would equate r
the returns in two states could not in the third. "That is, a riskless
arbitrage position could not be taken. Under the complete markets in-
terpretation, with three gqﬁations in no; three unknown state—continéen;
prices, we would lack the redundant equation necessary to price one se;

curity in terms of the other two.

IV, RISKLESS TRADING STRATEGIES

As an exercise, let's see how we could use the formula if the.
current market price M ever diverged from its formula value C. If

M>C, we would hedge, and if M<C, "reverse hedge" to try and lock in

a profit. However, suppose things got worse before they got better, so
that the market price of an option we thought was mispriced moves even
farther away from the formula value after we take a position. Coﬁldn't
we end up losing money?

Consider the followlng example:
$=80, n=3, K=80, u = 1.5, d=.5r=1.1

In this case, p=(r-d)/(u-d)=.5. The paths the stock price may fol-

low and their corresponding probabilities are:

As of n=3, r_3=,751 and
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120
(.6)
80 <
40
(.4)
As of n =2, when uS = 120, then r_2 = .B26 and
270
(.36)
180
(.6)
120 ' 2 >90
(.48)
60
(.4)
30
(.186)

As of n=2, when dS=40, then T >=.826 and
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40

Using the formula, the current vaiue of the call would he

C= [.064(0) + .288(0) + .432(90-80) + .216(270-80)] x .751 = 34.065

Recall that to form a riskless hedge, for each writtén call we buy O
shares of stock such that o = (Cu-Cd) * [(u=4d)S]. "The following tree
diagram gives the paths the call value way follow and its corresponding

neutral hedge ratios.
190

107.272

(1.00)
60.463 10
(.848)
34.065 2>5.454
(.719) (.167)
e ) 2.974 0
o (.136)
- 0

(0.00)
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With this preliminary analysis, we are prepared to use the formula
to take advantage of mispricing in the market. Suppose that when n=3,
the market price of the call is 36. OQur formula_ tells us the call should
be worth 34.065, The option 1s overpriced, so we ;:ould plan to s-ell it
and assure ourselves of a profit equal to.the mispricing differential.

Here are the steps you could take for a typical path the stock might foilow.
Step 1 (n=3): Sell the call for 36. Take 34.065 of
this and invest it in a portfolio contailning o= .719 shares
of stock by borrowing .719(80) - 34.065=23.455. Take the re-

mwainder, 36 - 34.065, and put it in the bank.

Step 2 (n=2): Suppose the stock goes to 120 so that
the new a=.848. Buy .B48-.719= .129 more shares of stock
at 120 per share for a total expeﬁditure of 15'480.' Borrow
to pay the bill. With an Interest rate of .1, you already
owe 23.455(1.1) =25.801. Thus, your total current indebt_;e&—
ness 1s 25.801+15.480=41.281.

Step 3 (n=1): Suppose the stock price now goes Ito 60.
The new &= .167. Sell .B4B- .167 = .681 shares at. 60 per
share, takirg in .681(60) =40.860. Use this to pay back
part of your borrowings. Since you now owe 41.281(1.1) =
45.469, after the repayment, you insteéd owe 45.409 - 40.860=
4.549,

Step 4d (n=0): Suppose-che stock pricelnow goes to 30.
The call you sold has expired worthless. You own .167 shares
of stock selling at 30 per share, for a tetal value of

.167(30) = 5. Sell the stock and repay the 4.549(1.1) =5
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that you now owe on the borrowing. Go back to the bank and
withdraw your original deposit, which has now grown to
1.935(1.1)% = 2575,

| Step 4u {n=0): Suppose, instead, the stock price goés
to 90. .The call you seld is in the money at the eiﬁiration
date. Euy back the call, or buy one share of stock aod let it
be exerciéed, incurring a loss of 90-80=10 either way. Bor;
row to cover this, bringing your curtrent indebtedness to

5410=15. You own .167 shares of stock selling at 90 per

ghare, for a total value of .167(90) =15. Sell.the stock

and repay the borrowlng. Go back to the baonk and withdraw

your original deposit, which has now grown to 1.935(1.1)3=

2,575,

In summary,.if we were correct in our original analyéis about
stock price movements (which did not involve the unenviable task of pre-
dicting q, whether the stock price would go up or down), and.if we
faithfully adjust our portfélio as prescribed by the formula, then we
can be assured of walking away in the clear at the expiration'date, while
still keeping that original differential and the interest it has accumu-
lated. It {s true that closing out the position before the expiration
date, which involves buying back the option at its then current market
price, might produce a icss which would more than offset our profit,
but this loss could always be avoided by waiting until the expiration
date. Moreover, if rhe wmarket price comes into line with the formula
value before the expiration date, we can close out the position ther with

no loss and be rid of the concern of keeping the portfolio adjusted.
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This answers ﬁur original question. The return on a perfectlf
hedged portfolio, when evaluated at prevailing market prices at inter= .
-mediate times, may be risky. But over a period ending no later than
the expiration date, it will be certain.

Throughout the hedging operation,'observe that we always adjustéd
the hedge ratio by buying or selling the stock. As a result, our profié

was independent of the market price of the call between the time we

initiated the hedge and the expiration date. If things got worse before
they got better, it did not matter to us.

We could have adjusted the hedge ratio by buyiﬁg or selling the
call instead of the stock. However, this could be dangerous. Suppose
that after initiating the position, to maintain meutrality we needed to
increase the hedge ratio. This can be achieved in two ways:

a) buy more stock, or

b) buy back some written calls,
If we adjust through the stock, there is no problem. If we insist on ad-
justing through the calls, not only is the hedge no longer riskless, but
it could even end up losing money! This can happen if the ‘call has be-
cqme'evén more overpriced. We would then be closing out part of our po-
sition in ecalls at a loss. To remain neutral, the number of calls we
would need to buy back depends on their value, not their price. There-.
fore, since we are uncertain about their price,lwe then become uncertain
about the 'return from the hedge. Worse yet, if the call price gets high
enough, the loss on the closed portion of our position could throw the

hedge operation into an overall loss,
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To see how this could happen, let us rerun the hedging operation,
- . where we adjust the hedge ratio by buying and sélling calls.
Step 1 01=3): Same as'beEAre.
Step 2 (n=2): Suppose the stock goes to 120, so that the new.
@ = .848. The call price has gottenlfur;her out of 1ine and is now
selling fo? 75. Since its value is 60.463, it is now overpriced by
14.537. With .719 shares, you must buy back 1-.848=.152 calls

to produce a hedge ratio of .848=.719/.848. This costs
75(.152) =11.40. Borrow to pay the bill. With the interest rate

of .1, you already owe 23.455(1.1) =25.801. Thus, your total cur—
;ent indebtedness is 25,801+ 11.40=37.201.
| Step 3 (n=1): Suppose the stock g&es to 60 and the call is
selling for 5.4534. Since the call is now fairly valued, no furj
ther excass profits can be made by continuing to hold the position.
Therefore, liquidate by selling your .719 shares fér .719{60) = 43.14
and zlose out the call position by buying back .848 calls for
.848(5.454)==4.625.- This nets 43.14-4.625=38.515. Use th;s to
pay back part of your horrowing. Sinéa you now owe 37.20(1.1) =
40.921, afrer repayment you owe 2.406. Go back to the bank and with-
' draw your original deposlt, which has now grown to 1.935(1.1)2 =
2.341. Unfortunately, after using this to repay your remaining
borrowings, you still owe .065.
Since we adjusted our position at step 2 by buying overpriced
calls, our profit is reduced. Indeed, since the calls were considerably
overpriced, we actually lost money despite apparent profitability of the

-. position at step 1. We can draw the following adjustment rule from our.
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experiment: To adjust a neutral position,'never buy an overpriced op-.
tion or sell an underpriced option. As a cérollary, whenever we can ad-
just a neutral position by buying more of an underpriced option or sell--
ing more of an overpriced option, our profit will be enhanced if we do
so. For exawple, zt step 3 in the o?iginal hedging illustration, had .
the call still been overptlced, it would have been better to adjust the
position by selling more célls rather than selling stock. In summary,

by choosing the vight side of the position to adjust at intermediate

dates, at a minimuwn we can be assured of earning the original differen-

tial and its accumulated interest, and we may earn considerably more.l

V. LIMITING CASES

In reading the previous sections, there is a natural tendency to
associate with each peried some particular length of calendar-timg, per-
haps a day. With this in mind, you may have had two objections. in the
first place, prices a day from ﬁow may take on many more than -just two
possible values. Furthermore, the market is not open fof trading only
once a day, but, instead, trading takes place more cr less coﬁtinuously.

These objections are certainly valid. Fortunately, our opﬁion
pricing approach has the flexibility to meet them. Although it might

have been natural to think of a period as one day, there was nothing that

1In principle, if we were prepared to take arbitrarily large po- -
sitions (i.e., "doubling-up'") as the ecall became more mispriced, we
could be assured of a profit even if we were committed to trading in
the call. However, practical considerations which might limit our cap-
ital would seem to favor rev151ng the hedge with stock.,
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forced us to do so. We could have taken a much shorter interval--say an
hour--or even a minute. By doing so, we have met both objections simul-
taneously. Not only would trading take place far more frequently, but

the stock price could also take onhundreds of values by the end of the day.

However, 1f we do this, we have to make some other adjustment to’
keep the probability small that the stock price will-change by a large )
amount over a minute. We do net want the stock to have the same percent-
age up and down moves for.one minute as it did before for oné day. In-
stead, we must think of the stock price as making oenly a very small per-
centage change over each minute,

To make this more precise, suppose that (At) represents the
elapsed time between successive stock price Ehanges. That is, if t is
the fixed length of calendar time to expiration, and n is the number

of periods of length At prior to expiration, then
At = t/n .

As trading takes place more and more frequently, At gets closer and
closer to zero. Likewise, the interval-dependent variables r, u, and 4d
in the binomial option pricing formula also must get smaller and smaller

as At nears zero, or, equivalently, as n-o .

As we turn from disecrete-time to continuous—time results, it will_
help if we redefine the symbol r . From this point, the reader is
warned that it will take on a related but different meaning. When we
have occasion to refer to the discrete onme plus rate of interest over

thelperiod of leﬁgth At , we will use the symbol T in place of Tr.
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Clearly, the size of £ depends on the number of subintervals ‘n
into which t is divided.. Over the n periods until expiration, the

~il . oA
rotal return is r , where n = t/At. Now not only do we want I O

depend on n, but we want it to depend on n in a particular way——so
that as n changes the Eotal féturn fn over the fixed time t re-
mains the same. This is because the interest rate obtainable over some
fixed length of calendar time should have nothing to do with how we

choose to think of the length of the time interval At.

If r (without the "hat") denotes one plus the rate of interest over a

. - . t .
fixed unit of calendar time, then over elapsed time t, T is the total

return. Observe that this measure of total return does not depend on

-~

n. As we have argued, we want to choose the dependence of r on n,
so that
Tt £
r =r ,
o A t/n . Lo
for any choice of n. Therefore, r =r . This last equation shows

how r wust depend on n for the total return over elapsed é;me t to
be independent of n.

We also need to define u .and d in terms of n. Aﬁ this point,
there are two significantly different paths we can take. Depending on
the definitions we choose, as n-=*= (or, equivalently, as At—+0), we

~can either have a contipuous or 'a jump stochastic process. The first
corresponds to a situation where each successive stock price is differ—
eutlthan, but very close to, the previous price, and the second to a
situation where each successive stock price is almost always close to the

previous price but oveccasionally significantly different. Both can be
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derived from our binomial process simply by choosing how u and d de-
-pend on n. We only fallow in detail the continuous path which leads
- to the canonical option pricing formula originally.derived by Fischer-
Black and Myron Scholes. Subsequently, we indicafe how to develop the

jump path formula originally derived by John Cox and Stéphen Ross.

Recall that we supposed over each period Ehat the stock price would
experience a one plus rate of return of u with probability q and d
with probability 1-q. It will be easier and clearer to work, instead,
with the natural logarithms of-the one plus rate of return, I1ln u or
ln d.  This gives the cont_inuously compounded rate of return on the
stock over each period. It is a random variable which, in each period,_
will be equal to 1ln u with probability q aod 1n d with probability
l1-q.

Consider a typical sequence of five moves, say u, d, u, u, d.

3.2

Then, S8* = vduudS. S*/S =u"d", and In(S5*%/S) = 3 Inu+ 2 1n d.

More generally, over n ‘perieds,
ln(S*/S) =jlnu+ (n-j)Ind =3 In(u/d) +a Ind,

where j 1s the (random) number of upward moves occurring during the n

periods to expiration. Therefore, the expected value of 1n(5*%/S) is
E[1n(5*/5)] = In(u/d) » E(j) +nlnd,
and its variance 1is

Var[1n(s%/8)]1 = [In(u/d)]1* * Var(j) -



-28-

Now j- is the total number of upward moves that will occur over
the next n periods, and each of these moves has probability q. Thus,
E(j) = ng. Also, since the variance each period is
Q(1TQ)2 + (l-q)(O—q)2 = q(1-q) , then Var(j) = nq(l-q) . Combining

all of this, we have:

E[1n(5%/S)] = [q ln(u/d) + 1n dn =

il
=
=]

Var[ln(S%/5)] = Q(l'-q)[ln(u/d)]zn

11
=]

Let us go back to our discussion. We were considering dividing up
our original longer time period {(a day) into many shorter periods (a min-
ute or even less)., Our procedure calls for, over fixed length of calen-
dar time ¢t , making n larger and larger. Now if we held everything
else constant while we let n become large, we would be faced withlthe

problem we talked zbout earlier. In fact, we would certainly not reach

a reasonable conclusion if either ﬁn or @ n went to zero or infinity
as n became large. Since t - 1is a fixed length of time, in searching
for a realistic result, we must make the appropriate adjystments in u,
d, and gq. In doing that, we would at least want the mean and variance
of the assumed future stock price and its continuously compounded rate
of return to coincide with that of the actual stock price as n-+=,
Suppose we label the actual empirical values-of in and 32n as ut-
and Uzt, respectively. Then we would want to choose u, d, and q: S0

that
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[q 1In(u/d) + 1n d]n -+ ut
as mn * .,

q( - @) {in(ue/d)1%n + ot

A little algebra shows we can accomplish this by letting

u= el t/n , d= e OEM and q = %'+'%(u/0){t7n .

In this case, for any n,

-

~2 2
pr = Ut and o n = [o -uz(t/n)]t 3
. . AZ 2 . fa)
Clearly, as n+«, 0 n*0 t, while ua.= Ut for all values of n.

Alternatively, we could have chosen u, d, and q so that the mean
and variance of rates of return of the discrete binomial pracess approach
the prespecified mean and variance of stock rate of return aé n>o,

Since this would not change our conclusion and it is computationally more
convenient to equalizé the cﬁntinuously compounded rates of return, we will.
proceed in that way.

This satisfies our initial requirement that the limiting means and
variances coincide, but we still need to verify that we are arriving at a
sensible liﬁiting probability distribution of the continuously compounded
rate of return. The mean and variance only describe certain aspects of
that distribution.

At this point, we rely on a version of the central limic theoreﬁ.

The usual version of this theorem states that as more observations are
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added, if they are independenﬁly and iden;ically distributed (with fi-
nite variance), their suﬁ approdches a normally distributed random var-
iable.

However, for our purpose, the usual version of the central limit
theorem will not suffice. This is because as we let n .approach infin-
ity, we are not simply adding one more random variable to the previous
sum, but are, instead, changing the probabilities gq and possible out-
-comes u and d for every member of the sum. The type of central lim-

it result we will need says that, as n+w

qun u—fj]3 + (1-q))in d-ﬁ’3
&

~
if + 0 and z -+ z ,

In(S5*%/5) - ﬁn
av/n

then Prob

Putting this into words, for fixed time to expiration, as the number of
periods into which it is dividéd approaches infinity, given ghe initial
condition, then the probability that the standardized cénFinuously com-
_podnded r;te of return of the stock through the expiration date is not
greater than the number 2 approaches the probability under a
standard normal digtribution,

The initial condition says roughly that higher-order properties‘of
the distribution, such as how it is skewed, become less and less imporc-
ant, relative to its standard deviationm, as n+w. To verify that the

condition is satisfied, by making the approprilate substitutioas,
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qin u-i®+ g-glina-> _ aa-a?+da-a
6%/a vng (L - q)

. 1
which goes to zero as n->w since q = E—+ %—(u/o)/t? . Thus, the

binomial option pricing formula includes thé lognormal distribution for
stock prices-as a limfting case.

Black and Scholes began direetly with continuous trgding and the
assumption of a lognormal distribution for stock prices. Their approach
relied on scme quite advanced mathematics. However, sinée our approach
contains the continuous trading and lognormal distribution as a limiting
case, the two resulting formulas should then coincide. We will see
shortly that this is indeed true, and we wili have the advan;age of us-
ing a much simpler method. It is important to remember, hoyever, that -
the economic arguments we used to link the option price and the stock
price are exactly the same as those advanced by Black and Scholes.

The formula derived by Black and Scholes, rewritten in terms of

our notation, is:

CANONICAL OPTICN PRICING FORMULA

C = SN(h) — Kr °N(h-ovE)

ln(S/Kr_t) + l-U/E
e 2

ay

,wheré h =

We now wish to confirm that our binomial formula converges to the
canonical formula when t is divided into more and more subintervals, and

T, u, d, and ¢q are chosen in the way we described-—that is, in a way-
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such that the binomial probability distribution of stock prices goes to
the lognormal distribution.
For easy reference, let us recall our binomial option pricing

formula:

C = SBla;n,p'] - KrﬁnB[a;n;P]-

o —

The similarities are readily apparent. r n is, of course, always equal
to r_t . Therefore, to show the two formulas converge, we need only

show that, as n-=+=

Blasn,p'] + N(h) and B[a;n,p] »> N(h-ovt) .

We will consider only B[a;n,pl, since the argument is exactly the same

for Bla;n,p'] .

The complewmentary binomial distribution fgnctién B[é;n,p] is the
probability that the number of up moves j is greater than or equal to a.
j, itself, represents the sum of n random variables, each of which is
either equal to 1 in the c;se of an up move or 0 in the case of a down
move. p is the probability of an up move, and 1-p is‘'the probability'
of a down move. From our previcus discussion, we know the mean aund stand-

ard deviation of j are np and vnp(l-p), respectively. Therefore,

- up a-1-np

1 - Bla;n,p] = Prob[j<a-1] = Prob ] < .
} vop(I-p)  vnp(i-p)

As before, 1n{(S*/8) = j In(u/d) + 2 In d, and the mean and var-

iance of the continuously compounded rate of return of the stock are:

ﬁp =p In(u/d) + Ind and Ss = p(l-—p)[ln(u/d)lz >
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where here these are defined in terms of prebability p, oot q. VUsing

these equalities, a little algebra shows:

: _n _ 1n(5%/8) - ].lpn

vnp (1-p) . 8##5

Recall from the binomial formuia that
a-1=1n(K/Sd")/1n(u/d) + o(n) = [In(K/S) -n ln d]/in(u/d) + o(n) ,

where the term o(n) goes to zero as un-+=, Using this and the defini-

tions of ﬁp and 8§ » with a little algebra, we have;

oY

- +
a-l-np _ In{X/8) p“. o(n)
Ynp{(l-p) Sp/ﬁ
Putting these results together, '
T 1n(5%/8) - U.n In(K/S) - B n + o(n)
1 - Blajn,p] = Prechb - P < — P__. .
o vn a vn
P P,

We are now in a position to apply the central limit theorem. First,

we must check if the initial conditionm,

~ 13 ~ 13
1 - + (1- In d-~ : 2 2
ap/;l Ynp (1-p)

as n>® 1s satisiied. By first recalling that p = (r-d)/(u—-d), and
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~ t/n d/t/n -GYt
then r=r , u=e » and d=e /n » it is possible to show that,

as n-*o,

2

1
pelsl(07 727 ) f
22 g - n

As a result, the initial condition nelds, and we are justified in applying

the central limii theorem.

To do so, we need ounly evaluate1 ﬁ n and 82n as n-+om .
P P

1 s ,
A surprising feature of this evaluation is that although p # q
and thus Hy # 1 ;and Sp # ¢, nonetheless GPJE and GvYa have the same

limiting value as n-+w. By contrast, since U # 1nt -~ (1/2 02) ' ﬁ n
P

and ﬁn do not. This results from the way we needed to specify u and
d to obtaln convergence to a lognormal distribution. Rewriting this as
oYt = (ln u)¥n, it is clear that the limiting value O of the standard
deviation does not depend on p or q, and hence must be the same for
either. However, at any point before the limit, since '

A2 2 2¢ ~2 2 1 2.2¢

Cn=(J —-Q n)t and Upn = [? - {1n -5 g) E]t ,

g and ap will generallf have different values.

2
property of the lognormal distribution that

~ 72
The fact that upn + (In r-£ 0 )t can also be derived from the

‘ 1 2
* = - —
1n E[5%/5] upt 2 g,

where E and M are measured with respect to probability p. Since

~ p ~ '
p=(r-d)/(u-3), it follows that t = pu + (1-p)d. For independently
distributed random veriables, the expactation of a product equals the ‘prod-
uct of their expectations. Therefore,

E[S%/S] = [pu+ (L=p)d]® =20 = r" .

Substituting rt for E[S*#/8) in the previous eyuvation, we have:
H =1lInr - i-02 .
P 2
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Examination of our discussion for parameterizing q shows that, as nre
A ' ‘12 .
En=>(Inr -=0 )t and 0 v/n + o/t .
P -2 P
For this application of the central limit theorem, then, since

_ In(k/S) - #n + o(n) In(x/S) - (n 1 - = 62)¢
7 = p - A 2
ap/ﬁ ort

we have

-t .
1 - B[a;n,p] + N(z) = N ].]‘.'I(—KI‘/_/_SL + % O'VKE
gyt -

The final step in the argument is to use the symmetry property of
tHe.standaLd normal. distribution that 1-N(z) = N{(-z) . Therefore, as
n-+=o«C

' s/kr’H 1
Bla;n,p] » N{(-z) = N lﬂi_i_ﬁ_f)_ E‘G/E = N(h-ovt) .
. Ch/E'
Since a similar argument holds for Blajn,p'], this completes our demon-
stration that the binomial option pricing formula contains the canonical

C e 1
formula as a limiting case.

1 .
In our original binomial development, our ability to create a
riskless hedge led to the following equation (somewhat rewritten):

t-d u- A
+ - =
l:u—c;|cu [u-;:lcd rC 0

if no riskless arbitrage were to be possible in the first period. By
their more difficult methods, Black and Scholes obtained directly a par-
tlal differential equation analogous to our discrete-time difference
equation. Their equation is:
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As we have remarked,-the seeds of both the canonical formula and
a continuous-time jump process formula are both contained within the bi—
nomial formulation. At which end point we arfive.depends on how we take
limits. Suppose, ip rlace of our forme; correspondence for u, d, and.

q, we instead set

Yt/n

u=u , d-= EC and q = A{t/n)

This correspondence captures the essence of & pure jump process in which
each successive stock price is almost always close to the previous price
(5+ds), but occasionally, with low but continuing probability, signifi-
cantly different (S+uS). Observe that as n+®, the probability of
a change by d becomes larger and larger, while the probability of a
change by u approaches zero.

With these specific;tions, the initial condition of tﬁe central
limit theorem is no longer Qatisfied, and it can be shown the stock price

Tovements converge to a Poisson rather than a lognormal distribution as

2

1 2.2 93°C 3C ac
= . = _ gv _ = .
2 ag’s 352 (lq r)s 35 at {In r)C =0

The value C of the call was then derived by solving this equation sub-
ject to the boundary condition C* = Max[0,5#%-K] . :

Based on our previous analysis, we would now suspect that as
n+e, our binomial hedging equation would approach the Black-Scholes
partial differential equation. This can be confirmed by substituting

our definitons of £, u, d in terms of n in the way described ear-
av.
ier, expanding Cu, C. din a Taylor series around (e ﬂtS, t-4At) and

d
- -ovAt _
(e U/E\ES’ t - At), respectively, and then expanding ech/ﬁE , £ 4t , and
rﬂt in a Taylor series, substituting these in the equation and collect-
ing terms. All terms higher than order At go to zero 1f we then divid
by At and let At * 0. This ylelds the Black-Scheles equation. '
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n*+®. Let us define

¢lhsyl = [T S

as the complementary Poisson distribution function. The limiting option

pricing formula for the above specifications of u, d, and q 1s then:

JUMP PROCESS OPTION PRICING FORMULA

© € ='5¢[h3y] - Kr Sp[h;y/u]

where y = ilBEEEL%lEE
In(K/S5) - Tt <che<l+ In(X/S) - ¢t
Inu -— Inu

where h is an integer

VI. DIVIDENDS AND PUT PRICING

We now return to ou; binomial development of section IIT and re—
lax the requirement that calls be protected against cash dividends. As
we shall.see, this produces some surprising complicationé. With one
period remaining before expiration, we suppose the‘current stock price
$ will change either to d(l-—G)xS or u(l-G)#S by the end of the
period. x=0 or 1, depending on whether or not the end of the period
is an ex-dividend date. § is the dividend yield at the end of the pe¥j
iod if x=1. Both it and # are assumed known with certainty. When

the call expires, its contract and a rational exercise policy imply
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that its value must either be C, = max[O,ﬁ(l-TG)xS-K] or

Cq = max[0,d(1-8)"S~K]. Therefore,

= max[0,u(l - §)%s -~ K]

@]
1l

9]
H

= max[0,d(1-§)%s ~K]

Again we hedge by writing one call against « shares of stock. The buyer
of the'call will either retain it until expiration or exercise it immed-
iately. Suppose, first,lhe does not exercise early. 1In this case, follow-
ing a series of formally equivalent steps1 as in section III, we can show

that:
C=1[pCy + (1-pcyl = T,

~ C—C
= r-d -_u d
where p = oo d and the neutral hedge ratio o (uw-a)s ° In‘effect,

(1-6)*S has simply replaced S in the values for Cu and -Cd'

However, considering the possibllity of early exercise, the call
will be worth the larger of its current exercise value and its retention

value., Therefore,

C = max{S~X, [pc, + (1-p)C4] + 2} .

lRemember that the hedger receives the dividend at the end of the
period; that is, his stock position is worth either auS or oadS.
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It ls easy to see early exerclse may be optimal. Suppose S 1s suffi-
clently high that d(1-6)™S > K. Since u>d, then, also, u(l-8)*s>xk.
In this case, C, = u(l- 6)*s-K and Cy = d(1-8)*s~K. Therefore,

the above equation simplifies to:
C = max{5-X, [pu(l—G)xS—pK+(l-p;)d(l-6)xS - (1-p)K] %'g}_.
éince (u/?)p + (d/;)(l-p) = 1, this simplifies further to:
C = max{§-K, (1-8%s~ &/} .

Presuming E.i 1, if there is no ex-dividend date prior to expiration
({.e., x=20), then C = 5-(K/r) and early exercise is not optimal.
However, 1f 6 > 0 and x = 1, then there always exists a critical stock

price S y such that 1f S5 .> 5 » the call should be immediately exercised.l

This analysis shows that premature e*erbise of calls is more likely the
higher the stock price, the higher the dividend yield, or the lawer the
interest rate, other things equal,

Unfortunately, unlike our analysis of payout-protected ﬁalls, the
possibility of premature exercise seems to prohibit a simpie formulation
for the value of an unprotected call with many periods to go. However, our
analysis suggests a sequential numerical procedure that will allow us to

calculate the value of an unprotected call to any desired degree of accu-

racy.

lA little algebra proves S = R(l-;—l)lﬁ.
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Let C be the current value of a_call with n periods remaining

until expiration. Let .C(n,i,j) be its value n=~i periods later, given

n—i—js
3

that the current stock price 5 would have changed to uld ignor-

ing dividends, where j=0,1,2,...,n-1i. Define
_ ngi i
x(n,i) = ’
: Ly *

so that x{(n,i) is the number of ex-dividend dates accurring prior to
period n-1.

_H’ith tiiis notation, we are prepared to solve for the current value
of thea call by working backward in time from the expiration date. At ex-

piration, i=0, so that

*x(n,0)

C(n,0,3) = max[0,u’d" 7 (1-8) S~K] for j=0,1,...,n .

One period before the expiration date, 1=1 so that

x(n,1)

C(n,1,j) = max{ujdﬂ—l—j (1-5) S-K, [pC(n,0,j+) + (1-p)C(n,0,3)] * £}

for j=0,1,...,n-1.
More generally, i perilods before expiration

C(n, 1,9) =maxfudad™ T3 (1-5)*® Vg g, [pein,i-1,5+1) + U-p)C(n,1-1,3)] ¢ £}

. - fO].' j=0’l,lll:,n—i -

Observe that each prior step provides the inputs needed to evaluate the

right-hand arguments of each succeeding step. The tree diagram in figure
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1 illustrates this process. The number of calculations alsoc reduces as

we move backward in time;

C(4,0,4)

C(4,1,3)

/\

€(,2,2) C(4,0, 3)

C(4,3,1) €(4,1,2)

C(4,4,0 C(4,2,1) >C(4,0,2)

0(4,3,0)\ C(4,1,1)
C(4,2,0)

C(4,1,0)

A

Cc(4,0,1)

/\/

0(4 0,0}

Fig. 1. Illustration of Binomial Numerical Procedure for Valuing
Options Where Premature Exercise May Be Desirable

Finally, with n periods before expiration, since i=n,
= €(n,n,0) = max{§~K, [pC(n,n-1,1) + (1-p)C(n,n-1,0)] + T}

and the neutral hedge ratio is:

C(n,n-1,1) - C(n,n-1,0)
(u-d)s -

=
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To illustrate, suppose we are given inputs required for the canon-
ical option pricing formula: 5, K, t, 0, and r. To convert this in-
formation into the dnputs d, u, and T required for the binomial num-

erical procedure, we use the relationships:

d=1/u , u=e . o, T= rt/n.

For d, u, and r calculated in this manmer, as we have shown, for fixed
t, the resulting approximation of C improves as n increases, other
things equal.

Téble 2 gives us a feeling for how rapidly option values approxi-
mated by the binomial method apprecach the corresponding canonical values.
At n=5, the values differ by at most $.25. At n=20, they differ by
at most $.07,.and at n=50, the greatest difference is less than $.03.
Although not shown, at n=150, the values are idéntical to the penny.

To derive a method for wvaluing puts, we return again to the bi-
nomial argument of section III. With one period remaining before expira-

tion, with P denoting the present put price,

= max[0, K-u(l-8)"s]

= max[0, K-d(1-8)%s]

La]
1

This time we hedge by writing one put against a short position of «

shares of stock. This will "cost" @S-P. Actually, since both terms -
1 .
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are negative, we initially take in money. The buyer of the put will either
‘retain it until expiration or exercise it immediately. Suppose, first, he
does not exercise it early. Ir this case, following a series of formally

equivalent steps as in section IIL, we can show that
P=1[pP, + (1-p)Byl + 1,

- . P -P
- . _u d
where p E i-d and the neutral hedge ratio o Tu=)8 Observe that,

for puts, since Pu < Pd’ then @ < Q.
However, considering the possibility of early exercise, the put

will be worth the larger of its exercise value and its retention value.

Therefore, for a put,

P = max{K-S, [pP, * (1-p)py) = T} .

If ¢ > 1, it is easy to see early exercise may be optimal. Suppose that
8 1is sufficiencly low that K > u(l-—d)xs. Since u > d, then, also,
K>d(1-6)"S. In this case, B, =K-U(1-6)"S and Py = K-d(1-6)%s.

Therefore, since (u/;)P + (d/;)(lhp) = 1, the above equation simplifies to:
P = max{K~S, (K/T) - (1-8)%s} .

If there are no dividends (i.e., x=0), then, since T > 1, P=K-S5 and
early excreise Is optimal. In.general, early exercise becomes more likely
if the put is deep-in-the-money and the interest rate is high. It can be
shown there always exists a critical stock price S y Such that if S<S ’

the put should be exercised immediately. The effect of dividends yet to
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be paid diminishes the advantages of immediate exercise, since the put
buyer will be reluctant éo sacrifice the forced declines in the stock
price on future ex-dividend dates.

Our analysis also indicates thaf,_with slight modification, we
can value puts with the same numerical technique we use for callé. Re;_
versing the differénce between the stock price and the striking price at

each stage is the only change.l

VII. CONCLUSION

. i
It should now be clear that whenever stock price movements conform

to a discrete binomial process, or to a limiting form of such a process,
options can be priced solely on the basis of arbitrage consideratioms.
Indeed, we could have significantly complicated the simple binomial proc—

ess while still retaining this property. For example, u and d ‘could

lMichael Parkinson [1977] has suggested a similar numerical pro-
cedure based on a trinomial process, where the stock price can either
increase, decrease, or remain unchanged. In fact, given the theoretical
basis for the binomial numerical procedure provided, the numerical method
can be -generalized to permit m+ 1 £ n jumps to new stock prices in
each period. We can consider exercise only every m periods, using
the binomial formula to leap across intermediate periods. In effect,
this means permitting m + 1 possible new stock prices before exercise
is again comsidered. That 1s, instead of considering exercise n
times, we would only consider it about n/m times. For fixed t and -
m, as n—+«, option values will approach their canonical values.

This alternative procedure is interesting, since it may enhance
computer efficiency. At one extreme, for dividend protected calls,
setting m+ 1 = n gives the most efficient results. However, the
more important the effect of potential early exercise and the greater
the accuracy required, the most efficient results are achieved by set-
ting m =1, as in our description above,



© —46~

have been deterministic functions of time. More significantly, the size
of the relative up and down stock Price movements over each period could
have depended on the stock price at the beginning of the period.l_ How-
ever, if the up and down movements were to depend on any other random -
variable, not itself a deterministiclfunetion of the stock price, then
our arbitrage argument would break down. -

It is also possible to incorporate certain types of imperfections
into the binomial option pricing approach, such as differential borrow-
ing and lending rates and margin requirements. These can be shown to
produce upper and lower boﬁnds on option prices, outside of which risk—
less profitable arbitrage would be possible.

Since all existing preference-free option pricing results can be
derived as limiting forms of a discrete binomial pProcess, we might sus-
pPect that binomial stock price movements must be 'in some sense neces—
sary, as well as sufficient,hto derive option pricing formulas baséd
solely on arbitrage considerations. Indeed, our earlier observation
that a discrete three-state or trinomial process would cause our arbi-
trage argument to break dowm suggeéts Just such a conclusiﬁn.' While we
have stopped short of supplying the formal arguments, it can be shown

that for an option pricing formula to be derived solely from arbitrage

10f course, different option pricing formulas would result from
these more complex stochastic processes. See Cox and Ross [1976] and
Geske [forthcoming]. Nonetheless, all option pricing formulas in these
papers can be derived as limiting forms of a properly specified discrete
binomial process.
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considerations,l the stock price must either follow discrete binomial
movements or folleow a liﬁiting form of such a process.

This rounds out the primcipal conclusion of this paper: The
simple binomial process is really the essential ingredient of option
pricing by arbitrage. This-is surpriéiné, perhaps, given the mathemat-.
ical complexities of some of the current models in this field. But it
is reassuring to find such simple economic arguments at the heart of

this new theory.

) 1Merton's [1976] multi-state model, with both continuous and
jump components, is a good example of a stoeck price process for which -
no exact option pricing formula is obtainable purely from arbitrage
considerations. To obtain an exact formula, it is necessary to impose
restrictions on investor preferences or on stochastic movements of
other securities. For example, Rubinstein [1976] has been able to de-
rive the canonical option pricing formula, under eircumstances that do
not admit arbitrage, by suitably restricting investor preferences.
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