Discrete Mathematics

Yi Li

Software School Fudan University

March 13, 2012

Review of Lattice

- Ideal
- Special Lattice
- Boolean Algebra

Examples of Proof

- Zeno's paradox
- Zhuang Zi's paradox
- Gong Sunlong's "a white horse is not a horse"
- ...

How can you persuade yourself and the others?

Examples of Proof

Axiom

The axiom of group theory can be formulated as follows:

- (G1) For all x, y, z: $(x \circ y) \circ z = x \circ (y \circ z)$.
- (G2) For all x: $x \circ e = x$.
- (G3) For every x there is a y such that $x \circ y = e$.

Theorem

For every x there is a y such that $y \circ x = e$.

What is Logic

- Premise
- Argument
- Conclusion
- Follow
- Proof

History of Mathematical Logic

- Aristotle(384-322 B.C.): theory of syllogistic
- De Morgan(1806-71), Boole(1815-64), Schröder(1841-1902)
- Frege(1848-1925), Russell(1872-1970)
- Post(1897-1954), Gödel (1906-78), Henkin(??), Herbrand(1908-31)
- Robbinson(1930-); Beth and Smullyan
- Leibniz(1646-1716) and Hilbert(1862-1943)

Introduction to Mathematical Logic

- First order logic
 - Propositional Logic
 - Predicate Logic
- High order logic
- Other type of logic
 - Modal logic
 - Intuitionistic logic
 - Temporal logic

Introduction to Mathematical Logic

- Proof system
 - Axiom
 - Tableaux
 - Resolution
- Two Components
 - Syntax
 - Semantics
- Algorithmic approach

Order

Definition (Partial order)

A partial order is a set S with a binary relation < on S, which is transitive and irreflexive.

Definition (Linear order)

A partial order < is a *linear order*, if it satisfies the *trichotomy* law: x < y or x = y or y < x.

Definition (Well ordering)

A linear order is *well ordered* if every nonempty set A of S has a least element.

Countable and Infinite

Definition (Countable)

A set A is *countable* if there is a one-to-one mapping from A to \mathcal{N} .

Definition (Finite)

A set A is *finite* if there is a one-to-one mapping from A to $\{0, 1, \ldots, n-1\}$ for some $n \in \mathcal{N}$.

Definition

- If A is not countable, it is uncountable.
- If A is not finite, it is *infinite*.

Countable and Infinite

Theorem

Let A be a countable set. The set of all finite sequence of elements in A is also countable.

Proof.

We can formalize it as

$$S = \bigcup_{n \in \mathcal{N}} A^n = A^1 \cup A^2 \cup \dots \cup A^n \cup \dots.$$

Construct a mapping from A^n to \mathcal{N} .

Trees

Definition (Tree)

A *tree* is a set T (whose elements are called nodes) partially ordered by $<_T$, with a unique least element called the *root*, in which the predecessors of every node are well ordered by $<_T$.

Definition (Path)

A path on a tree T is a maximal linearly ordered subset of T.

Definition (Properties of tree)

- lacktriangle The *levels* of a tree T are defined by induction.
- ② The 0^{th} level of T consists precisely of the root of T.
- **1** The $k + 1^{th}$ level of T consists of the immediate successors of the nodes on the k^{th} level of T.

Definition (Properties of tree)

- The *depth* of a tree T is the maximum n such that there is a node of level n in T.
- ② If there are nodes of the level n for every natural number n, we say the depth of T is infinite of ω .

Definition (Properties of tree)

- If each node has at most n immediate successors, the tree is n-ary or n-branching.
- If each node has finitely many immediate successors, we say that the tree is finitely branching.
- A node with no successors is called a *leaf* or a terminal node.

Theorem (König's lemma)

If a finitely branching tree T is infinite, it has an infinite path.

Proof.

- If there is no infinite path, the tree would be finite.
- Split the successors of the node into two parts. One with inifinite successors and the other with finite successors.

Definition

A *labeled tree* T is a tree T with a function (the labeling function) that associates some objects with every node. This object is called the *label* of the node.

Definition (Segment)

- **1** σ is an *initial segement* of τ if $\sigma \subset \tau$ or $\sigma = \tau$.
- ② σ is an proper initial segement of τ if $\sigma \subset \tau$.

Definition (Lexicographic ordering)

For two sequences σ and τ we say that $\sigma <_L \tau$ if $\sigma \subset \tau$ or if $\sigma(n)$, the n^{th} entry in σ , is less than $\tau(n)$ where n is the first entry at which the sequences differ.

One way to define a linear order based on given tree.

Definition (left to righ ordering)

Given two nodes x and y,

- If $x <_T y$, we say that $x <_L y$.
- ② If x and y are incomparable in the tree ordering, find the largest predecessors of x and y, say x' and y'
 - If x' equals y', $x \le y$ if and only if x is left to y relative to x'.
 - Otherwise $x <_L y$ if and only if $x' <_L y'$.

Next Class

- Language of proposition logic
- Formation tree
- Truth table
- Connectives