Discrete Mathematics

Yi Li

Software School Fudan University

May 9, 2012

Yi Li (Fudan University)

Review

- Deduction from promises
- Compactness theorem
- Application

Outline

- Application of compactness theorem
- Limits of propositional logic
- Predicates and quantifiers

Example

Given an infinite planar graph. If its every finite subgraph is k-colorable, then the graph itself is also k-colorable.

Solution: Let $p_{a,i}$ represent vertex *a* is colored with *i*. We can formulate a graph which is *k*-colorable with the following propositions.

- $p_{a,1} \lor p_{a,2} \lor \cdots \lor p_{a,k}$, for every $a \in V$. It means every vertex could be colored with at least one of k colors.
- ¬($p_{a,i} \land p_{a,j}$), 1 ≤ i < j ≤ k for all a ∈ V. It means
 C_i ∩ C_j = Ø.
- $\neg(p_{a,i} \land p_{b,i}), i = 1, ..., k$ for all *aEb*. It means no neighbors have the same color.

Example

Every set S can be (totally) ordered.

Theorem

An infinite tree with finite branch has an infinite path.

Expressive Power of PL

- not.
- and.
- or.
- if . . . then
- Oeclarative sentences.

Expressive Power of PL

Example

If Socrates is a man then Socrates is mortal.

Solution (Propositional Logic)

- A: "Socrates is a man".
- B: "Socrates is mortal".
- We can represent the previous statement as $A \rightarrow B$.
- If A is true, then we know B is true.

Example

Given two statements:"All men are mortal" and "Socrates is a man". What can we do?

Solution

 We all know the following statement holding, "Socrates is mortal".

Example

The previous example can be abstracted further like

- P: All As have property B.
- **Q**: C is one of As.

Remark

- There is no relation between P and Q.
- The flaw is that "is/in" relationship can not be expressed by PL.
- Consider "there exists ...", "all ...", "among ...", and "only ...".

A richer language is needed. Yi Li (Fudan University) Discrete Mathematics

May 9, 2012 11 / 22

Example

Consider a simple sentence, every student is younger than some instructor.

Solution

It is a declarative statement, which can be expressed by a proposition letter, say P.

Remark

- However, it means being a students, being a instructor and being younger than somebody else.
- **2** *P* fails to reflect the finer logic structure of it.

Solution (Continue)

Consider a special instance of this statement. Suppose Andy is a student and Paul is a instructor. Let's introduce some predicates, which asserts something has some property. Now we have

- S(Andy): Andy is a student.
- I(Paul):Paul is an instructor.
- Solution Y(Andy, Paul): Andy is younger than Paul.

Remark

- There are many instances. Too many symbols are needed.
- Introduce variable, which can represent any students or instructors.
- How about "every/all" and "some"?
 - I means "there exists", which is called existential quantifier.
 - \bigcirc \forall means "for all", which is called universal quantifiers.

Solution (Continue)

Now it can be written as $\forall x(S(x) \rightarrow \exists y(I(y) \land Y(x, y))) \in Y(x, y)$

Yi Li (Fudan University)

Discrete Mathematics

Example

Consider this sentence "Bobby's father can beat up the father of any other kid on the block".

Solution

Here the point is that how to express the connection between child and father. Function is proper than predicate because a child can determine his father. Let

- K(x): x is a child on the block and b means Bobby.
- (x): x's father,
- B(x, y): x can beat up y,

• Finally,
$$\forall x(K(x) \rightarrow (\neg(x = b) \rightarrow B(f(b), f(x)))).$$

Predicates and Quantifiers

- predicates
- variables
- constants
- functions
- *universal quantifier*: ∀, "for all".
- *existential quantifier*: \exists , there exists

The Language

Definition (Language)

A language \mathcal{L} consists of the following disjoint sets of distinct primitive symbols:

- Variables: $x, y, x_0, x_1, \ldots, y_0, y_1, \ldots$ (an infinite set)
- **2** Constants: c, d, c_0, d_0, \ldots (any set of them).
- Quantifiers: \forall, \exists
- Predicate symbols: $P, Q, R, P_1, P_2, \ldots$
- Function symbols: $f, g, h, f_0, f_1, \ldots$
- Punctuation: the comma , and (right and left) parentheses), (

Term

Definition (Term)

Terms.

- Every variable is a term
- Every constants symbol is a term.
- If f is an n-ary function symbol (n = 1, 2, ...) and
 - t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is also a term.

Definition (Ground term)

Terms with no variables are called *variable-free terms* or *ground terms*.

Formula

Definition (Atomic formula)

An *atomic formula* is an expression of the form $R(t_1, \ldots, t_n)$ where R is an n-ary predicate symbol and t_1, \ldots, t_n are terms.

Formula

Definition (Formula)

Formulas.

- Every atomic formula is a formula.
- If α, β are formulas, then so are (α ∧ β), (α → β), (α ↔ β), (¬α), (α ∨ β).
 If us is a variable and using formula, then ((¬u))
- If v is a variable and α is a formula, then ((∃v)α) and ((∀v)α) are also formulas.

Examples

Example

Let the domain consist of all relational numbers \mathcal{Q} .
Again $\varphi(x,y) = (x < y), f(x,y) = x + y$,
$g(x,y)=x \div y$ and $a=0,b=1,c=2$ are constants
$ \ \textbf{ (} (\forall x)(\varphi(x,z) \rightarrow ((\exists y)(\varphi(x,y) \land \varphi(y,z)))) $
$(\varphi(x,g(f(x,y),c)) \land \varphi(g(f(x,y),c),y))))$

Next Class

• Syntax of Predicate Logic