Discrete Mathematics

Yi Li

Software School
Fudan University

March 6, 2012

Review

- Review of a partial order set
- Review of abstract algebra
- Lattice and Sublattice

Outline

- Special Lattices
- Boolean Algebra

Ideal

Definition (Ring)

Given a ring R and a nonempty set $I \subseteq R . I$ is an ideal of R if it subjects to:
(1) For any $a, b \in I, a-b \in I$.
(2) For any $a \in I, r \in R, a r, r a \in I$.

Definition (Lattice)

A subset I of a lattice L is an ideal if it is a sublattice of L and $x \in I$ and $a \in L$ imply that $x \cap a \in I$.
A proper ideal I of L is prime if $a, b \in L$ and $a \cap b \in I$ imply that $a \in I$ or $b \in I$.

Ideal

Example

Given a lattice and sublattice P and I as shown in the following Figure, where $P=\{a, 0\}$ and $I=\{0\}$.

Figure: Ideal and prime ideal

Ideal

Definition

(1) The ideal generated by a subset H will be denoted by $i d(H)$, and if $H=\{a\}$, we write $i d(a)$ for $i d(a)$; we shall call $i d(a)$ a principal ideal.
(2) For an order P, a subset $A \subseteq P$ is called down-set if $x \in A$ and $y \leq x$ imply that $y \in A$.

Ideal

Theorem

Let L be a lattice and let H and I be nonempty subsets of L.
(1) I is an ideal if and only if the following two conditions hold:
(1) $a, b \in I$ implies that $a \cup b \in I$,
(2) I is a down-set.
(2) $I=i d(H)$ if and only if
$I=\left\{x \mid x \leq h_{0} \cup \cdots \cup h_{n-1}\right.$ for some $n \geq 1$ and $\left.h_{0}, \ldots, h_{n-1} \in H\right\}$.
(3) For $a \in L, i d(a)=\{x \cap a \mid x \in L\}$.

Special Lattice

Definition

A lattice L is complete if any(finte or infinite) subset $A=\left\{a_{i} \mid i \in I\right\}$ has a least upper bound $\cup_{i \in I} a_{i}$ and a greatest lower bound $\cap_{i \in I} a_{i}$.

Definition

A lattice L is bounded if it has a greatest element 1 and a least element 0 .

Theorem

Finite lattice $L=\left\{a_{1}, \ldots, a_{n}\right\}$ is bounded.

Special Lattice

Definition

A lattice L with 0 and 1 is said to be complemented if for every $a \in L$ there exists an a^{\prime} such that $a \cup a^{\prime}=1$ and $a \cap a^{\prime}=0$.

Sometimes, we can relax the restrictions by defining complement of b relative to a as $b \cup b_{1}=a, b \cap b_{1}=0$ if $b, b_{1} \leq a$.

Example

$<\mathcal{P}(S), \subseteq>$ is complemented for any nonempty set S.

Special Lattice

Example

Given a poset $<\{0, a, b, c, 1\}, R>$ described in following figure.

Figure: Complemented Lattice.

Special Lattice

Definition

A lattice L is distributive if for any $a, b, c \in L$ such that:
(ㅇ) $a \cap(b \cup c)=(a \cap b) \cup(a \cap c)$.
(2) $a \cup(b \cap c)=(a \cup b) \cap(a \cup c)$.

If a lattice is not distributive, we call it non-distributive.

Example

$<\mathcal{P}(S), \subseteq>$ is distributive for any nonempty set S.

Boolean Algebra

Definition

A Boolean algebra is a lattice with 0 and 1 that is distributive and complemented.

Example

$<\mathcal{P}(A), \subseteq>$ is a Boolean algebra. Specially $A=\{a, b\}$.

Figure: $\mathcal{P}(A)$, where $A=\{a, b\}$.

Boolean Algebra

Example

$<\{1,2,3,6\}, \mid>$ is a Boolean algebra.
First, we can verify that it is distributive and complemented. We can prove that $<\{1,2,3,6\}, \mid>$ is isomorphic to $<\mathcal{P}(\{a, b\}), \subseteq>$.
We know the mapping keep the properties of operations \cap, \cup. So $<\{1,2,3,6\}, \mid>$ is also a Boolean algebra.

Boolean Algebra

Theorem (Stone's Representation Theorem, 1936)

Every finite Boolean algebra is isomorphic to the Boolean algebra of subsets of some finite set S.

Corollary

Every finite Boolean algebra has 2^{n} elements for some n.

Boolean Algebra

Theorem

The complement a^{\prime} of any element a of a Boolean algebra B is uniquely determined. The mapping' is a one-to-one mapping of B onto itself. It satisfies the conditions.

$$
(a \cup b)^{\prime}=a^{\prime} \cap b^{\prime}, \quad(a \cap b)^{\prime}=a^{\prime} \cup b^{\prime}
$$

Boolean Algebra

Definition

A ring is called Boolean if all of its elements are idempotent.

Theorem

Boolean algebra is equivallent to Boolean ring with identity.
(1) Define $a+b=\left(a \cap b^{\prime}\right) \cup\left(a^{\prime} \cap b\right)$ (symmetric difference of a and b) and $a \cdot b=a \cap b$.
(2) Conversely, define $a \cup b=a+b-a b$ and $a \cap b=a b$ given a ring.

Next Class

- Introduction to logic
- Some represented concepts

