Discrete Mathematics

Yi Li

Software School Fudan University

June 5, 2012

Yi Li (Fudan University)

Review

- Semantics: Meaning and Truth
- Structure
- Relation between Predicate Logic and Propositional Logic
- Some Application

Outline

- Atomic tableaux
- Tableau proof
- Property of CST

Tableaux

- Signed sentence
- Entries of a tableaux
- How to deal with quantifiers?

Truth

Definition (Truth)

The *truth* of a sentence φ of \mathcal{L} in a structure \mathcal{A} in which every $a \in A$ is named by a ground term of \mathcal{L} is defined by induction.

•
$$\mathcal{A} \models \exists v \varphi(v) \Leftrightarrow$$
 for some ground term $t, \mathcal{A} \models \varphi(t)$.
• $\mathcal{A} \models \forall v \varphi(v) \Leftrightarrow$ for all ground term $t, \mathcal{A} \models \varphi(t)$.

Quantifiers: Atomic Tableaux

 $\mathcal{A} \models \exists v \varphi(v) \Leftrightarrow$ for some ground term $t, \mathcal{A} \models \varphi(t)$.

 $\begin{array}{c} T(\exists x)\varphi(x) \\ \downarrow \\ T\varphi(c) \end{array}$ for a new constant c

Quantifiers: Atomic Tableaux

 $\mathcal{A} \models \forall v \varphi(v) \Leftrightarrow$ for all ground term $t, \mathcal{A} \models \varphi(t)$.

$$\begin{array}{c} T(\forall x)\varphi(x) \\ | \\ T\varphi(t) \\ \text{for any ground term } t \text{ of } \mathcal{L}_{\mathcal{C}} \end{array}$$

Quantifiers: Atomic Tableaux

$$F(\forall x)\varphi(x)$$

$$\downarrow$$

$$F\varphi(c)$$
for a new constant c

$$\begin{array}{c}F(\exists x)\varphi(x)\\|\\F\varphi(t)\\\text{for any ground term }t\text{ of }\mathcal{L}_{\mathcal{C}}\end{array}$$

We define *tableaux* as binary trees labeled with signed sentence(of $\mathcal{L}_{\mathcal{C}}$) called entries by induction. Base step:

- All atomic tableaux are tableaux.
- In cases 7b and 8a, c is new simply means that c is one of the constants c_i added on to L to get L_C(which therefore does not appear in φ).

Induction step:

if τ is a finite tableau, P a path on τ , E and entry of τ occurring on P.

- τ' is obtained from τ by adjoining an atomic tableau with root entry E to τ at the end of the path P, then τ' is also a tableau.
- Here the requirement that c be new in Case 7b and 8a means that it is one of the c_i that do not appear in any entries on P.
- In actual practice it is simpler in terms of bookkeeping to choose one not appearing at any nod of τ.

Tableaux: definition

If we have

- τ_0 is a finite tableau.
- $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ is a sequence of tableaux such that, for every $n \ge 0, \tau_{n+1}$ is constructed from τ_n by an application of induction step,
- $\tau = \cup \tau_n$ is also a tableau.

Tableaux from S: definition

The definition for tableaux from S is the same as for ordinary tableaux except that we include an additional formation rule:

If τ is a finite tableau from S, φ a sentence from S, P a path on τ and τ' is obtained from τ by adjoining Tφ to the end of the path P, then τ' is also a tableau from S.

Tableau Proof

Definition

Tableau proofs (from S): Let τ be a tableau and P a path in τ .

- *P* is *contradictory* if, for some sentence α , $T\alpha$ and $F\alpha$ both appear as labels of nodes of *P*.
- **2** τ is *contradictory* if every path on τ is contradictory.

Tableau Proof(Cont.)

Definition

τ is a proof of *α* (from S) if *τ* is a finite contradictory tableau (from S) with its root node labeled *Fα*. If there is proof *τ* of *α* (from S), we say *α* is provable (from S) and write ⊢ *α* (S ⊢ *α*).
S is *inconsistent* if there is a proof of *α* ∧ ¬*α* from S for some sentence *α*.

Tableau proof(Cont.)

Example

Check the formula
$$((\forall x)\varphi(x) \rightarrow (\exists x)\varphi(x))$$
.

Example

Check the formula

$$(\forall x)(P(x) \rightarrow Q(x)) \rightarrow ((\forall x)P(x) \rightarrow (\forall x)Q(x))$$

Example

Check the statement $(\psi(x) \rightarrow (\exists x)\varphi(x)) \Rightarrow (\exists x)(\psi(x) \rightarrow \varphi(x))$

Tableau(Cont.)

Definition

Let $\tau = \bigcup \tau_n$ be a tableau (from S), P a path in τ , E an entry on P and ω the i^{th} occurrence of E on P (i.e., the i^{th} node on P labeled with E).

- ω is reduced on P if
 - E is neither of the form T(∀x)φ(x) nor F(∃x)φ(x) and, for some j, τ_{j+1} is gotten from τ_j by an application Rule (ii) of Definition 1 to E and a path on τ_j which is an initial segment of P. (In this case, we say that E occurs on P as the root entry of an atomic tableau.)

Tableau(Cont.)

Definitionor \geq E is of the form $T(\forall x)\varphi(x)$ or
 $F(\exists x)\varphi(x), T\varphi(t_i)$ or $F\varphi(t_i)$, respectively, is an entry on
P and there is an $(i + 1)^{st}$ occurrence of E on P.

Tableau(Cont.)

Definition

 τ is finished if every occurrence of every entry on τ is reduced on every noncontradictory path containing it (and Tφ appears on every noncontradictory path of τ for every φ in S). It is unfinished otherwise.

Complete Systematic Tableau(Cont.)

Definition

Suppose T is a tree with a left-right ordering on the nodes at each of its levels. Recall that if T is, for example, a tree of binary sequence, the left-right ordering is given by the usual lexicographic ordering. We define the *level-lexicographic ordering* on \leq_{LL} on the nodes ν, μ of T as follows:

 $\nu \leq_{LL} \Leftrightarrow$ the level of ν in T is less than that of μ or ν and μ are on the same level of T and ν is to the left of μ .

Complete Systematic Tableau

Definition

We construct the CST, the *complete systematic tableau*, with any given signed sentence as the label of its root, by induction.

• We begin with τ_0 an atomic tableau with root the given signed sentence. This atomic tableau is uniquely specified by requiring that in Cases 7a and 8b we use the term t_i and that in Cases 7b and 8a we use c_i for the least allowable *i*.

Complete Systematic Tableau(Cont.)

Definition

If E is not of the form T(∀x)φ(x) or F(∃x)φ(x), we adjoin the atomic tableau with apex E to the end of every noncontradictory path in τ that contains ω. For E of the form T(∃x)φ(x) or F(∀x)φ(x), we use the least constant c_j not yet appearing in the tableau.

Complete Systematic Tableau(Cont.)

Definition

If E is of the form T(∀x)φ(x) or F(∃x)φ(x) and ω is the ith occurrence of E on P we adjoin
 E or E | |
 Tφ(t_i)
 respectively, to the end of every noncontradictory path in τ containing ω.

Property of CST

Proposition

Every CST is finished.

Next Class

- Soundness
- Completeness