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Truth Assignment

How we discuss the truth of propositional letters?

Definition (Assignment)
A truth assignment A is a function that assigns to each
propositional letter A a unique truth value
A(A) ∈ {T ,F}.
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Truth Valuation

How we discuss the truth of propositions?

Example
Truth assignment of α and β and valuation of (α ∨ β).

α β (α ∨ β)
T T T
T F T
F T T
F F F

Yi Li (Fudan University) Discrete Mathematics April 1, 2012 5 / 20



Assignment and Valuation

Definition (Valuation)
A truth valuation V is a function that assigns to each
proposition α a unique truth value V(α) so that its
value on a compund proposition is determined in
accordance with the appropriate truth tables.

Specially, V(α) determines one possible truth assignment
if α is a propositional letter.
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Assignment and Valuation

Theorem
Given a truth assignment A there is a unique truth
valuation V such that V(α) = A(α) for every
propositonal letter α.

Proof.
The proof can be divided into two step.

1 Construct a V from A by induction on the depth of
the associated formation tree.

2 Prove the uniqueness of V with the same A by
induction bottom-up.
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Assignment and Valuation

Corollary
If V1 and V2 are two valuations that agree on the support
of α, the finite set of propostional letters used in the
construction of the proposition of the proposition α, then
V1(α) = V2(α).
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Tautology

Definition
A proposition σ of propostional logic is said to be valid if
for any valuation V ,V(σ) = T . Such a proposition is
also called a tautology.
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Tautology

Example
α ∨ ¬α is a tautology.

Solution:

α ¬α α ∨ ¬α
T F T
F T T
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Logical Equivenlence

Definition
Two proposition α and β such that, for every valuation
V ,V(α) = V(β) are called logically equivalent. We
denote this by α ≡ β.
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Logical Equivenlence(Cont.)

Example
α→ β ≡ ¬α ∨ β.

Proof.
Prove by truth table.

α β α→ β
T T T
T F F
F T T
F F T

α β ¬α ¬α ∨ β
T T F T
T F T F
F T T T
F F T T
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Consequence

Definition
Let Σ be a (possibly infinite) set of propositions. We say
that σ is a consequence of Σ (and write as Σ |= σ) if,
for any valuation V ,

(V(τ) = T for all τ ∈ Σ)⇒ V(σ) = T .
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Consequence

Example
1 Let Σ = {A,¬A ∨ B}, we have Σ |= B .
2 Let Σ = {A,¬A ∨ B ,C}, we have Σ |= B .
3 Let Σ = {¬A ∨ B}, we have Σ 6|= B .
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Model

Definition
We say that a valuation V is a model of Σ if V(σ) = T
for every σ ∈ Σ. We denote by M(Σ) the set of all
models of Σ.
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Model

Example
Let Σ = {A,¬A ∨ B}, we have models:

1 Let A(A) = T ,A(B) = T
2 Let A(A) = T ,A(B) = T ,A(C ) = T .
3 Let
A(A) = T ,A(B) = T ,A(C ) = F ,A(D) = F , . . ..
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Model

Definition
We say that propositions Σ is satisfiable if it has some
model. Otherwise it is called unsatisfiable. To a
proposition, it is called invalid.
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Properties

Proposition
Let Σ,Σ1,Σ2 be sets of propositions. Let Cn(Σ) denote
the set of consequence of Σ and Taut the set of
tautologies.

1 Σ1 ⊆ Σ2 ⇒ Cn(Σ1) ⊆ Cn(Σ2).
2 Σ ⊆ Cn(Σ).
3 Taut ⊆ Cn(Σ) = Cn(Cn(Σ)).
4 Σ1 ⊆ Σ2 ⇒M(Σ2) ⊆M(Σ1).
5 Cn(Σ) = {σ|V(σ) = T for all V ∈ M(Σ)}.
6 σ ∈ Cn({σ1, . . . , σn})⇔ σ1 → (σ2 . . .→ (σn →
σ) . . .) ∈ Taut.
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Deduction Theorem

Theorem
For any propostions ϕ, ψ, Σ ∪ {ψ} |= ϕ⇔ Σ |= ψ → ϕ
holds.

Proof.
Prove by the definition of consequence.
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Next Class

Tableau proof system
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