Discrete Mathematics

Yi Li

Software School Fudan University

April 1, 2012

Yi Li (Fudan University)

Review

- Formation tree
- Parsing algorithm

Outline

- Truth assignment
- Truth valuation
- Tautology
- Consequence

Truth Assignment

How we discuss the truth of propositional letters?

Definition (Assignment)

A truth assignment A is a function that assigns to each **propositional letter** A a unique truth value $A(A) \in \{T, F\}.$

Truth Valuation

How we discuss the truth of propositions?

Example

Truth assignment of α and β and valuation of $(\alpha \lor \beta)$.

Definition (Valuation)

A truth valuation \mathcal{V} is a function that assigns to each **proposition** α a unique truth value $\mathcal{V}(\alpha)$ so that its value on a compund proposition is determined in accordance with the appropriate truth tables.

Specially, $\mathcal{V}(\alpha)$ determines one possible *truth assignment* if α is a propositional letter.

Assignment and Valuation

Theorem

Given a truth assignment \mathcal{A} there is a unique truth valuation \mathcal{V} such that $\mathcal{V}(\alpha) = \mathcal{A}(\alpha)$ for every propositonal letter α .

Proof.

The proof can be divided into two step.

- Construct a V from A by induction on the depth of the associated formation tree.
- Prove the uniqueness of V with the same A by induction bottom-up.

Assignment and Valuation

Corollary

If \mathcal{V}_1 and \mathcal{V}_2 are two valuations that agree on the support of α , the finite set of propositional letters used in the construction of the proposition of the proposition α , then $\mathcal{V}_1(\alpha) = \mathcal{V}_2(\alpha)$.

Tautology

Definition

A proposition σ of propostional logic is said to be *valid* if for any valuation $\mathcal{V}, \mathcal{V}(\sigma) = T$. Such a proposition is also called a *tautology*.

Tautology

Example

 $\alpha \lor \neg \alpha$ is a tautology.

Solution:

Logical Equivenlence

Definition

Two proposition α and β such that, for every valuation $\mathcal{V}, \mathcal{V}(\alpha) = \mathcal{V}(\beta)$ are called *logically equivalent*. We denote this by $\alpha \equiv \beta$.

Logical Equivenlence(Cont.)

Example

$$\alpha \to \beta \equiv \neg \alpha \lor \beta.$$

Proof.

Prove by truth table.

α	β	$\neg \alpha$	$\neg \alpha \lor \beta$
Т	Т	F	Т
Т	F	Т	F
F	Т	Т	Т
F	F	Т	Т

Consequence

Definition

Let Σ be a (possibly infinite) set of propositions. We say that σ is a *consequence* of Σ (and write as $\Sigma \models \sigma$) if, for any valuation \mathcal{V} ,

$$(\mathcal{V}(\tau) = T \text{ for all } \tau \in \Sigma) \Rightarrow \mathcal{V}(\sigma) = T.$$

Consequence

Example

• Let
$$\Sigma = \{A, \neg A \lor B\}$$
, we have $\Sigma \models B$.

2) Let
$$\Sigma = \{A, \neg A \lor B, C\}$$
, we have $\Sigma \models B$.

) Let
$$\Sigma = \{\neg A \lor B\}$$
, we have $\Sigma \not\models B$.

Model

Definition

We say that a valuation \mathcal{V} is a *model* of Σ if $\mathcal{V}(\sigma) = T$ for every $\sigma \in \Sigma$. We denote by $\mathcal{M}(\Sigma)$ the set of all models of Σ .

Model

Example

Let
$$\Sigma = \{A, \neg A \lor B\}$$
, we have models:

• Let
$$\mathcal{A}(A) = T, \mathcal{A}(B) = T$$

2 Let
$$\mathcal{A}(A) = T, \mathcal{A}(B) = T, \mathcal{A}(C) = T.$$

Let

$$\mathcal{A}(A) = T, \mathcal{A}(B) = T, \mathcal{A}(C) = F, \mathcal{A}(D) = F, \ldots$$

Model

Definition

We say that propositions Σ is *satisfiable* if it has some model. Otherwise it is called *unsatisfiable*. To a proposition, it is called *invalid*.

Properties

Proposition

Let Σ , Σ_1 , Σ_2 be sets of propositions. Let $Cn(\Sigma)$ denote the set of consequence of Σ and Taut the set of tautologies.

$$2 \Sigma \subseteq Cn(\Sigma).$$

3 Taut
$$\subseteq$$
 Cn $(\Sigma) =$ Cn $(Cn(\Sigma))$.

•
$$Cn(\Sigma) = \{\sigma | \mathcal{V}(\sigma) = T \text{ for all } \mathcal{V} \in \mathcal{M}(\Sigma)\}.$$

•
$$\sigma \in Cn(\{\sigma_1, \ldots, \sigma_n\}) \Leftrightarrow \sigma_1 \to (\sigma_2 \ldots \to (\sigma_n \to \sigma) \ldots) \in Taut.$$

Deduction Theorem

Theorem

For any propositions φ, ψ , $\Sigma \cup \{\psi\} \models \varphi \Leftrightarrow \Sigma \models \psi \rightarrow \varphi$ holds.

Proof.

Prove by the definition of consequence.

Next Class

• Tableau proof system