Discrete Mathematics

Yi Li

Software School Fudan University

June 12, 2012

Yi Li (Fudan University)

Review

- Tableau Proof
- Complete Systematic Tableaux

Outline

- Soundness
- Completeness
- Compactness

Tableau Proof

Example

Consider a sentence $(\exists y)(\neg R(y, y) \lor P(y, y)) \lor (\forall x)R(x, x)$. There is a model \mathcal{A} .

Soundness

Lemma

If $\tau = \bigcup \tau_n$ is a tableau from a set of sentences S with root $F\alpha$, then any \mathcal{L} -structure \mathcal{A} that is a model of $S \cup \{\neg \alpha\}$ can be extended to one agreeing with every entry on some path P through τ .(Recall that \mathcal{A} agrees with $T\alpha(F\alpha)$ if α is true(false) in \mathcal{A} .)

Theorem (Soundness)

If there is a tableau proof τ of α from S, then $S \models \alpha$.

Completeness

Theorem

Suppose P is a noncontradictory path through a complete systematic tableau τ from S with root $F\alpha$. There is then a structure A in which α is false and every sentence in S is true.

Completeness(Cont.)

Lemma

Let the notation be as above

- If $F\beta$ occurs on P, then β is false in A.
- **2** If $T\beta$ occurs on P, then β is true in A.

Property of CST

Proposition

If every path of a complete systematic tableau is contradictory, then it is a finite tableau.

Property of CST

Corollary

For every sentence α and set of sentences S of \mathcal{L} , either

 the CST from S with root Fα is a tableau proof of α from S.

or

 there is a noncontradictory branch through the complete systematic tableau that yields a structure in that α is false and every element of S is true.

Completeness and Soundness

Theorem (Completeness and Soundness)

- α is a tableau provable from $S \Leftrightarrow \alpha$ is a logical consequence of S.
- So If we take α to be any contradiction such as $\beta \land \neg \beta$ in 1, we see that S is inconsistent if and only if S is unsatisfiable.

Size of model

Definition

The *size* of a model is the cardinality of the universe A in the structure A.

Example

Let
$$\mathcal{A} = < \{c_0, c_1, \dots, c_n\}, \{P = \{ < c_0, c_0 > \}, R = \{ < c_0, c_0 >, < c_1, c_1 >, \dots, < c_n, c_n > \} >$$
. It is easy to check it is a model of

$$\alpha = (\exists y)(\neg R(y, y) \lor P(y, y)) \lor (\forall x)R(x, x)$$

Size of model

Example

Suppose we have a language $\mathcal{L} = \langle \{P, \}, \{f(x, y)\}, \{c, d\} \rangle$. Given two sentences $(\forall x)P(c, x)$ and $(\forall x)(P(x, c) \rightarrow P(x, d))$. We know that the structure $\mathcal{A} = \langle \mathcal{N}, \{P = \leq\}, \{f(x, y)\}, \{c = 0, d = 2\} \rangle$ is a infinite model of them.

Theorem (Löwenheim-Skolem)

If a countable set of sentences S is satisfiable, then it has a countable model.

Proof.

Consider the tableau proof with the root $F\alpha \wedge \neg \alpha$.

Compactness

Theorem

Let $S = \{\alpha_1, \alpha_2, \ldots\}$ be a set of sentences of predicate logic. S is satisfiable if and only if every finite subset of S is satisfiable.

Proof.

Consider the tableau proof with the root $F(\alpha \wedge \neg \alpha)$. The tree should not be finite

Theorem

Let L be a first-order language. Any set S of sentences of L that is satisfiable in arbitrarily large finite models is satisfiable in some infinite model.

Sketch Idea:

Suppose S is satisfiable in arbitrary large finite models. Let R be a 2-ary relation symbol that is not part of the language L, and enlarge L to L' by adding R. We can modify the interpretation of R without affecting the truth values of members of S, since R does not occur in members of S. So we can write a sentence A_n that asserts there are at least n thing.

Yi Li (Fudan University)

Discrete Mathematics