6 Identify Design Elements

Mastering Object-Oriented Analysis and Design
with UML

Module 6: Identify Design Elements

FH T

R B 1T

R T E
BT ET 4R
A5

P

1w v

FRA R
Kzt 3 BEM

Identify Design Elements in Context

[Early ‘

Elaboration \l/ [Inception
Iteration] Iteration (Optional)]

Define a Candidate Perform
Architecture Architectural

l S <> Synt\T/esis
X ®

NS Analyze Behavior

Identify Design *

Elements Architect Refine the
Architecture

(Optional)

Design Design the
Components Database

l l
N

e

il

Soft ware

Architecture
Document

Project
Specific
Guiddines
,

-
"

Supplementary ™

Specfications

Identify D esign
Mechanis ms

S

Structure the

Q

L]

Software
Architect

Implementation Model
(fram lmplementation)

ldentify Design
Elemenis

.

Describe Fun-
Time Architecture

Soft ware

B
T
g -E
Design
Model

Implementation
Model

“ 'Jf'.-"m al

Analysis Deploy ment
Mo del Mod &

)

Imcorporate
Existing Design
Elements

I_“H
D es cribe
Dis tribution

o ®

Architecture

Do curmernt
(updated)

|dentify Design Elements Steps

Y ¢
.

¢

¢

¢ Checkpoints

|0
C

C
U

entify classes and subsystems
entify subsystem interfaces
entify reuse opportunities

pdate the organization of the Design

Model

Analysis Classes

=

From Analysis Classes to Design Elements

Analysis Classes

<<boundary>>

<<control>>

<<entity>>

<<boundary>>

Design Elements

O_
O_

=l

<<subsystem>>

Subsystem

Many-to-Many Mapping

8

= |

<<subsystem>>
Subsystem

i

il

Example: Registration Package

MainStudentForm MainRegistrarForm

L N

<<boundary>> <<boundary>>
RegisterForCoursesForm CloseRegistrationForm

o
[N

1

<<control>>
CloseRegistrationController

<<control>>
RegistrationController

Example: University Artifacts Package: Generalization

<<entity>>

<<entity>>

Student ScheduleOfferinglnfo

<<entity>> <<entity>> <<entity>>
FulltimeStudent B ParttimeStudent PrimaryScheduleOfferinginfo

i 0

10

i
ol

Example: University Artifacts Package: Associations

_ <<entity>>
<<entity>> a Schedule
Student 1

Student | 0.
[
0..* 0..*
primaryCourses alternateCourses
0.4 \/O"Z
*
<<entity>> [Ny <<entity>> <<entity>> 0.
Professor CourseOffering eammyd Course .
0.1 0.* P | L

Prerequisites

CourseOfferingList

Example: External System Interfaces Package

<<Interface>> <<Interface>>
IBillingSystem |CourseCatalogSystem

i

il

Review: Subsystems and Interfaces

* Realizes one or more interfaces that define
its behavior

<<interface>> @
Interface Name 4 RIS
— Subsystem Name

Realization (Canonical form)
Interface Subsystem

‘ <<subsystem>>

Interface Name

Subsystem Name

Realization (Elided form)

13

i
ol

|dentify Design Elements Steps

¢+ |dentify classes and subsystems
% ¢ ldentify subsystem interfaces
¢ |dentify reuse opportunities

+ Update the organization of the Design
Model

¢ Checkpoints

Example: Design Subsystems and Interfaces

Analysis Design
= |

<<boundary>>
BillingSystem

<<subsystem>>
Billing System

JIsubmit bill() \V/
IBillingSystem

submitBill(forTuition : Double, forStudent : Student)

<<boundary>>
CourseCatalogSystem

= |

<<subsystem>>
Course Catalog System

//get course offerings() .

ICourseCatalogSystem

getCourseOfferings(forSemester : Semester, forStudent : Student) : CourseOfferingList

initialize()

All other analysis classes map directly to design classes.

15 IEM

Example: Analysis-Class-To-Design-Element Map

Analysis Class Design Element
CourseCatalogSystem CourseCatalogSystem Subsystem
BillingSystem BillingSystem Subsystem

All other analysis classes
map directly to design
classes

16

Modeling Convention: Subsystems and Interfaces

= |

<<subsystem>>

. CourseCatalogSystem

ICourseCatalogSystem + initialize ()
+ getCourseOfferings ()

Interfaces start with an “I” E

<<interface>> <<subsystem>>
ICourseCatalogSystem CourseCatalogSystem

+ getCourseOfferings () + initialize ()
+ initialize () + getCourseOfferings ()

17 IEM

Example: Subsystem Context: CourseCatalogSystem

<<control>>
RegistrationController

<<control>> Required interface
CloseRegistrationController :
ISR O cfined e + getCurrentSchedule()

+ deleteCurrentSchedule()
+ submitSchedule()

+ saveSchedule()

+ getCourseOfferings()

+ setSession()

+ <<class>> new()

+ getStudent()

+ // is registration open?()
+ // close registration()

0.1

+courseCatalog

<<Interface>>
ICourseCatalogSystem

+ getCourseOfferings (for Semester: Semester)
+ initialize ()

Provided
interface

defined

<<subsystem>>
CourseCatalogSystem

+ initialize ()
+ getCourseOfferings ()

19 IEM

Example: Subsystem Context: Billing System

<<control>>
CloseRegistrationController

+ // is registration open?()
+ // close registration()

0.1

+ Biller 1

<<Interfacg>>
IBillingSystem > <<entity>>
T

Student

+ submitBill(forStudent : Student, forTuition : double)

<<subsystem>>
BillingSystem

+ submitBill(forStudent : Student, forTuition : double)

19

|dentify Design Elements Steps

¢+ |dentify classes and subsystems
¢ |dentify subsystem interfaces
% ¢ |dentify reuse opportunities

+ Update the organization of the Design
Model

¢ Checkpoints

Reuse Opportunities Internal to System

M
|
I

=

] LEl
=

|dentify Design Elements Steps

¢+ |dentify classes and subsystems

entify subsystem interfaces
¢ |dentify reuse opportunities

% ¢ Update the organization of the Design
Model

¢ Checkpoints

C
C

Example: Architectural Layers

Base Reuse

global

<<layer>>
Application

<<layer>>
Business
Services

<<layer>>
Middleware

23

Necessary because the
Application Layer must

have access to the core
distribution mechanisms
provided with Java RMI.

Example: Application Layer

<<layer>>

Application

Registration

Example: Application Layer Context

<<layer>>
Business Services

<<layer>>
Application

Registration

[1

<<layer>>
Application

I
_| v

<<layer>>
Business
Services

Security \

\&

Secure Interfaces GUI Framework

25

e

il

Example: Business Services Layer

<<layer>>
Business Services

]

<<subsystem>> <<subsystem>>
BillingSystem CourseCatalogSystem

7/
] K, /

External System
Interfaces

Securit
| - —
/ GUI <<subsystem>>
\ I / Framework Security
Manager
N v V /
—] L
_ : Secure
University Interfaces
Artifacts

ObjectStore
Support

Example: Business Services Layer Context

<<layer>>

<<subsystem>>| Business Services
BillingSystem

[1

<<layer>>
Business

_ Services
Otgi;f;(r)tre GUI <<subsystem>>
Framework Security |
Manager I
_| \'4

<<layer>>
Middleware

University
Artifacts

<<layer>>
Middleware

¥

[
o

i
ol

Example: Middleware Layer

<<layer>>
Middleware

com.odi

Map Session
(from com.odi) (from com.odi)
Transaction Database
(from com.odi) (from com.odi)

28

Statement
(from com.odi)

java.sql

DriverManager Connection
(from com.odi) (from com.odi)

ResultSet

(from com.odi)

e

il

/ RunTime Architecture

i

ilh

Mastering Object-Oriented Analysis and Design
with UML

Module 7: Describe the Run-time Architecture
Rational. software

Describe the Run-time Architecture in Context

[Early ‘

Elaboration \l/ [Inception
Iteration] Iteration (Optional)]

Define a Candidate Perform
Architecture Architectural

l E <> Synt\T/esis
X ®

Analyze Behavior

.

Refine the
Architecture

(Optional)

Descri_be the
Run-time Architect
Architecture

Design Design the
Components Database

l l
N

31

e

il

FH T

R B 1T

R T E
BT ET 4R
A5

P

1w v

FARAWRTT
KVt . IBM

— - =
=] - ,E ~ | 1
=] ”'HEI _H -
Soft ware Proisct Design Implementation
Architecture aggé?ﬂc Model Model
Document Guiddines
e |
_: H II ﬂ- II n
— . [} LS |
L ™, S = -
| x___-.-‘-) IE) Inr-f t
Supplementary ™ ANalyas eploymen
Specifications R‘H WMo del Maods
F
Identify [esign ldentify Design Incorporate
Mechanis rms Elements Existing Design
Elements
,
Software | | : b
RETEEE Structure the Describe Run- —
Implementation Maodel Time Architecture D &s cribe
(fram lmplementation) Distribution
|
 J
=
—
Soft ware
Architecture
Do cument
(updated)

o
o =

ra =

Describe the Run-time Architecture Steps

% ¢ Analyze concurrency
requirements

¢+ |dentify processes and threads
¢+ |dentify process lifecycles

* Map processes onto the
Implementation

¢ Distribute model elements
among processes

Example: Concurrency Requirements

* In the Course Registration System, the
concurrency requirements come from the
requirements and the architecture:

» Multiple users must be able to perform their
work concurrently

= |f a course offering becomes full while a
student is building a schedule including that
offering, the student must be notified

» Risk-based prototypes have found that the
legacy course catalog database cannot meet
our performance needs without some
creative use of mid-tier processing power

Describe the Run-time Architecture Steps

¢ Analyze concurrency requirements
% ¢ |dentify processes and threads
¢ |dentify process lifecycles
¢ Map processes onto the implementation

¢ Distribute model elements among
processes

Example: Modeling Processes: Class Diagram

<<process>> 1 1 <<thread>>
CourseCatalogSystemAccess CourseCache
A 1 g ow
dependency—p | composition
I
<<process>> <<thread>>
CourseRegistrationProcess 1 OfferingCache

)

<<process>>
StudentApplication

Describe the Run-time Architecture Steps

¢ Analyze concurrency requirements
¢ |dentify processes and threads
* ¢ |dentify process lifecycles
¢ Map processes onto the implementation

¢ Distribute model elements among
processes

Example: Create Processes and Threads

1: createT hread

2 createT hread

Creation of threads during application startup.

20

Describe the Run-time Architecture Steps

¢ Analyze concurrency requirements
¢ |dentify processes and threads
¢ |dentify process lifecycles
* ¢ Map processes onto the implementation

¢ Distribute model elements among
processes

Mapping Processes onto the Implementation

¢ Processes and threads must be mapped
onto specific implementation constructs

¢ Considerations
* Process coupling
» Performance requirements
» System process and thread limits
= Existing threads and processes
» |PC resource availability

Describe the Run-time Architecture Steps

¢ Analyze concurrency requirements

¢ |dentify processes and threads

¢ |dentify process lifecycles

¢ Map processes onto the implementation

% + Distribute model elements among
processes

Design Element Allocation

+ Instances of a given class or subsystem
must execute within at least one process

* They may execute in several processes

Student Application Process

MainStudentForm RegisterForCoursesForm

Modeling the Mapping of Elements to Processes

¢ Class diagrams
= Active classes as processes/threads

<<process>> <<thread>>
Process Name Thread Name
= Composition relationships from processes/threads
to classes

<<process>>
Process Name Domuuumn Class Name

= Composition relationships from processes/threads

to subsystems
<<process>> <<subsystem>>
Process Name ‘— Subsystem Name

i
ol

Process Relationships

* Process relationships must support design
element relationships

<<process=:=
Process Y

sSupports

<<process==
FProcessXx

Example: Register for Course Processes

<<process>>
StudentApplication [~ — —— =

<<process>>
CourseRegistrationProcess

=<process==

— — — — == CourseCatalogSystemAccess

1

VA
MainStudentForm
(from Registration)

1 QO

0..1 /

<<boundary>> 1

1 <<control>>

10

1

+courseCatalog

) 1

<<subsystem>>
CourseCatalogSystem
(from CourseCatalogSystem)

1 !
v

<<|nterface>>

RegisterForCoursesForm
(from Registration)

={ RegistrationController

(from Registration)

0.* 1

ICourseCatalogSystem
(from External System Interfaces)

Example: Register for Course Processes (cont.)

<<thread>> <<entity>>
OfferingCache [~ >| CourseOffering
1 0.~ (from University Artifacts)

N

1
1
<<process>> /
CourseCatalogSystemAccess
1\ 1

<<thread>> | 0.” <<entity>>

CourseCache [= Course
(from University Artifacts)

il

8 Describe Distribution

i

ilh

Mastering Object-Oriented Analysis and Design
with UML

Module 8: Describe Distribution

Describe Distribution Overview

Software
Architecture
Document

L

Implementation Model

=N

Supplementary
Specifications

Describe

Distribution

Deployment Model

4

Design Model

S0 E.I:I.l!‘l.

Key Concepts: The Deployment View

Logical View Implementation View

Analysts/Designers A ST Programmers

Structure _‘_ :) <Q Software management

Use-Case View

End-user
Functionality

Process View Deployment View

System engineering

System integrators System topology, delivery,

Performance, scalability, throughput installation, communication

The Deployment View is an “architecturally significant”
slice of the Deployment Model.

i
ol

51

Review: Example: Deployment Diagram with Processes

<<client workstation>>

PC

<<CampusLAN>>1

<<application server>>
Registration Server

CourseCatalogSystemAccess <<Campus LAN>>
CourseRegistrationProcess
BillingSystemAccess

<<Campus LAN>>

<<legacy RDBMS>> <<legacy>>

Course Catalog Billing

System

52 E.I:I.l!‘l.

Why Distribute?

+ Reduce processor load

* Special processing
requirements

¢ Scaling concerns
¢+ Economic concerns

+ Distributed access to the
system

Distribution Patterns

¢ Client/Server

3-tier

~at Client
—at Server
Distributed
Client/Server

+ Peer-to-peer

Client/Server Architectures

— Thinner Client, thicker server —

WWW Browser

Client A Client B Client C

Application Application

I I
I I
I I
! I
I I
I I
I I
I . .

Business Object DCOM |
I
I I
I
I Business Object _ . :
I Engine Business Object Server Web Server :
I
| :
I I
I I
I I
! I
I I
I I
I I
! I
I I
I I
I I
I

COM Beans HTML
Business Object Business Object
Services Services
Business Object Business Object
Engine Engine

Database Server(s)

Client/Server: Three-Tier Architecture

Client B

Application

Application Services

DCOM
ADO/R CORBA|| Beans

Business Object Server

COM Beans
MTS ETS

Business Object

Business Services S

Business Object
Engine

Database Server(s)

Data Services

) L

56

Client/Server: “Fat Client” Architecture

Client A

Application

Application Services Business Object

Services

Business Services Business Object

Engine

Database Server(s)

Data Services

[

57

Client/Server: Web Application Architecture

Client C

WWW Browser

Web Server

HTML

Business Object
Business Services Services

Application Services

Business Object
Engine

Database Server(s)

Data Services @ @

58

Peer-to-Peer Architecture

Application
Services

Business
Services

Data Services

Application
DCOM

COM Beans
MTS ETS

Business Object
Services

Business Object
Engine

59

Application
DCOM

COM Beans
MTS ETS

Business Object
Services

Business Object
Engine

Describe Distribution Steps

+ Define the network configuration
+ Allocate processes to nodes
+ Define the distribution mechanism

i

il

Describe Distribution Steps

% ¢ Define the network configuration
+ Allocate processes to nodes
+ Define the distribution mechanism

i

il

The Network Configuration

¢ End-user workstation nodes

* "Headless" processing
server nodes

+ Special configurations
* Development
= Test

¢ Specialized processors

¥
E!

Review: What Is a Node?

¢ Represents a run-time
computational resource

= Generally has at least memory
and often processing

capability.
¢ Jypes:
» Device

* Physical computational
resource with processing
capability.

* May be nested

= Execution Environment

 Represent particular
execution platforms

<<device>>
Device Name

<<device>>
Sub Device
NETlE

<<exe env>>
EE Name

63

f-=3

I

il

Review: What Is a Connector?

¢+ A connector represents a.
» Communication mechanism

* Physical medium

« Software protocol

<<client workstation>>
<<100-T Ethernet>> Kiosk

Connector

<<application server>>
Server
<<RS-232>> <<client workstation>>
Console

64

i

Review: Example: Deployment Diagram

<<client workstation>>

PC

1 <<Campus LAN>>

<<application server>>
Registration Server

<<Campus LAN>> <<Campus LAN>>

<<legacy RDBMS>> <<legacy>>
Course Catalog Billing

System

65 E.I:I.l!‘l.

Describe Distribution Steps

+ Define the network configuration
% ¢ Allocate processes to nodes
+ Define the distribution mechanism

Process-to-Node Allocation Considerations

¢ Distribution patterns

¢ Response time and system throughput
+ Minimization of cross-network traffic

+ Node capacity

¢ Communication medium bandwidth

+ Avallability of hardware and
communication links

¢ Rerouting requirements

e
i

Review: Example: Deployment Diagram with Processes

<<client workstation>>

PC

<<CampusLAN>>1

<<application server>>
Registration Server

CourseCatalogSystemAccess <<Campus LAN>>
CourseRegistrationProcess
BillingSystemAccess

<<Campus LAN>>

<<legacy RDBMS>> <<legacy>>

Course Catalog Billing

System

68 E.I:I.l!‘l.

What is Deployment?

* Deployment is the assignment, or mapping,
of software artifacts to physical nodes
during execution.

= Artifacts are the entities that are deployed onto
physical nodes

* Processes are assigned to computers
+ Artifacts model physical entities.

* Files, executables, database tables, web pages,
etc.

* Nodes model computational resources.
= Computers, storage units.

i
ol

Example: Deploying Artifacts to Nodes

<<client workstation>>

<<client workstation>> PC

PC

StudentApplication

<<process>>
StudentApplication

: : <<deploy>>
<<client workstation>> [S ——. > <<process>>

StudentApplication

PC

70

What is Manifestation?

* The physical implementation of a model
element as an artifact.

= Arelationship between the model element and
the artifact that implements it

* Model elements are typically implemented as
a set of artifacts.

* Source files, executable files, documentation file

i
ol

Example: Manifestation

<<header>>
MainStudentForm

<<source>>
MainStudentForm

<<client workstation>>
PC

<<manifest>>

<<deploy>>

72

MainStudentForm

|

|

| .

| <<manifest>>
|

|

|

<<process>>
StudentApplication

What is a Deployment Specification?

* A detailed specification of the parameters of
the deployment of an artifact to a node.

* May define values that parameterize the
execution

i
ol

Example: Deployment Specification

<<manifest>>
<<header>> = | uhiiaiyigedyi > _
MainStudentForm

MainStudentForm

- .
~ = <<manifest>>
<<source>> -

|

|

|
MainStudentForm I <<manifest>>

|

|

|

. . << >>
<<client workstation>> [NEERSSAL AN N
StudentApplication

PC

<<deploymentSpec>>
StuAppDeploy

execution =
priority =
location =

r BN

Describe Distribution Steps

+ Define the network configuration
+ Allocate processes to nodes
% ¢ Define the distribution mechanism

Distribution Mechanism

* RMI was chosen as the implementation
mechanism for distribution

Invocation (RMI)

Analysis Design : Implementation
Mechanism Mechanism | Mechanism
(Conceptual) (Concrete) : (Actual)
|
|
I
Distribution Remote Method : Java 1.2 from Sun
|
|
I
!
|
|

76

i
ol

Design Mechanisms: Distribution: RMI

¢ Distribution characteristics
= | atency
= Synchronicity
* Message Size
= Protocol

Remote Method Invocation (RMI) (continued)

Roles to be filled by the
designer applying the

One mechanism For all classes that realize the Remote
Instance Naming. interface, a remote stub and a remote

per node (from java.rmi) O skeleton are created. These classes handle

the communication that must occur to
lookup(name : String) : Remote Remote support distribution.
(from java.rmi)

<<role>>
SampleDistributedClassClient |EEgECS

Any Java class that you want to A

pass as an argument to an
<<|nterface>>
ISampleDistributedClass

operation on a remote interface
must realize the Serializable
Interface.
doSomething(aParameter : SamplePassedData) ‘\
‘~,..~“ A \ “‘
.".' \ “
o \ [}
To "distribute" a class in Java, you must define an interface
that inherits from Remote. The distributed class needs to
realize the defined Remote interface and also inherit from
(extend) the UnicastRemoteObject.

1

~~
. . >\
UnicastRemoteObiject

(from Server) —

<<role>>
._ SamplePassedData
1
|

Serializable
(from java.io)
<<role>>

SampleDistributedClass

A

doSomething(aParameter : SamplePassedData)

78

Example: Incorporating RMI

<<layer>>
Business Services

<<layer>>
Application

University Artifacts

(from Business Services)

Registration
Package
(from Application)

<<layer>>
Middleware

v

<<interface>>

Serializable
(from java.io)

java.rmi

Naming
(from java.rmi)

UnicastRemote
Object

(from Server)

<<interface>>
remote
(from java.rmi)

79

<<layer>>
Application

<<layer>>
Business
Services

<<layer>>
Middleware

