
1

6 Identify Design Elements

2

3

4

Identify Design Elements in Context

[Early
Elaboration

Iteration]
[Inception

Iteration (Optional)]

Define a Candidate
Architecture

Perform
Architectural

Synthesis

Analyze Behavior

Refine the
Architecture

Design
Components

Design the
Database

(Optional)Identify Design
Elements Architect

5

6

7

Identify Design Elements Steps

 Identify classes and subsystems

 Identify subsystem interfaces

 Identify reuse opportunities

 Update the organization of the Design
Model

 Checkpoints

Analysis Classes

8

From Analysis Classes to Design Elements

Analysis Classes Design Elements

<<boundary>>

<<control>>

<<entity>>

<<boundary>>

Many-to-Many Mapping

Subsystem
<<subsystem>>

Subsystem
<<subsystem>>

9

Example: Registration Package

MainRegistrarForm

1

11

MainStudentForm

1

RegisterForCoursesForm

<<boundary>>

0..10..1

11

CloseRegistrationForm

<<boundary>>

0..10..1

CloseRegistrationController

<<control>>
RegistrationController

<<control>>

1

10

FulltimeStudent

<<entity>>

ParttimeStudent

<<entity>>
PrimaryScheduleOfferingInfo

<<entity>>

ScheduleOfferingInfo

<<entity>>
Student

<<entity>>

Example: University Artifacts Package: Generalization

11

Student

<<entity>>

Professor

<<entity>>

Schedule

<<entity>>

CourseOffering

<<entity>>

CourseOfferingList

1

Prerequisites

0..*
Course

<<entity>>
0..*

1

instructor

0..1

0..*

0..*0..*

0..*

0..4

primaryCourses

0..*

0..2

alternateCourses

0..*

1

Example: University Artifacts Package: Associations

12

IBillingSystem

<<Interface>>

ICourseCatalogSystem

<<Interface>>

Example: External System Interfaces Package

13

 Realizes one or more interfaces that define
its behavior

Subsystem

Review: Subsystems and Interfaces

Interface
Realization (Canonical form)

Realization (Elided form)

Interface Name

Subsystem Name
<<subsystem>>

Interface Name

<<interface>>

Subsystem Name
<<subsystem>>

14

Identify Design Elements Steps

 Identify classes and subsystems

 Identify subsystem interfaces

 Identify reuse opportunities

 Update the organization of the Design
Model

 Checkpoints

15

All other analysis classes map directly to design classes.

Analysis Design

Example: Design Subsystems and Interfaces

BillingSystem

//submit bill()

<<boundary>>

Billing System

<<subsystem>>

IBillingSystem

submitBill(forTuition : Double, forStudent : Student)

CourseCatalogSystem

//get course offerings()

<<boundary>>

Course Catalog System

<<subsystem>>

ICourseCatalogSystem

getCourseOfferings(forSemester : Semester, forStudent : Student) : CourseOfferingList

initialize()

16

Analysis Class Design Element

CourseCatalogSystem

BillingSystem

All other analysis classes

map directly to design

classes

CourseCatalogSystem Subsystem

BillingSystem Subsystem

Example: Analysis-Class-To-Design-Element Map

17

Interfaces start with an “I”

Modeling Convention: Subsystems and Interfaces

CourseCatalogSystem
<<subsystem>>

ICourseCatalogSystem + initialize ()

+ getCourseOfferings ()

CourseCatalogSystem
<<subsystem>>

+ initialize ()

+ getCourseOfferings ()

ICourseCatalogSystem
<<interface>>

+ getCourseOfferings ()

+ initialize ()

18

Example: Subsystem Context: CourseCatalogSystem

Provided

interface

defined

ICourseCatalogSystem
<<Interface>>

CloseRegistrationController

+ // is registration open?()

+ // close registration()

<<control>>

0..1

+courseCatalog

CourseCatalogSystem
<<subsystem>>

+ initialize ()

+ getCourseOfferings ()

+ getCourseOfferings (for Semester: Semester)

+ initialize ()

RegistrationController

+ getCurrentSchedule()

+ deleteCurrentSchedule()

+ submitSchedule()

+ saveSchedule()

+ getCourseOfferings()

+ setSession()

+ <<class>> new()

+ getStudent()

<<control>>

CourseOfferingList

+ new()

+ add()

1

Required interface

defined

19

Example: Subsystem Context: Billing System

IBillingSystem

+ submitBill(forStudent : Student, forTuition : double)

<<Interface>>1

0..1

+ Biller 1

Student

<<entity>>

CloseRegistrationController

+ // is registration open?()

+ // close registration()

<<control>>

BillingSystem
<<subsystem>>

+ submitBill(forStudent : Student, forTuition : double)

20

Identify Design Elements Steps

 Identify classes and subsystems

 Identify subsystem interfaces

 Identify reuse opportunities

 Update the organization of the Design
Model

 Checkpoints

21

?

Reuse Opportunities Internal to System

22

 Identify classes and subsystems

 Identify subsystem interfaces

 Identify reuse opportunities

 Update the organization of the Design
Model

 Checkpoints ClassB

Y()

Z()

ClassA

Y()

Z()

Identify Design Elements Steps

ClassC

Y()
Z()

ClassD

Y()
Z()

ClassC

Y()
Z()

ClassE

Y()
Z()

23

Example: Architectural Layers

Middleware

<<layer>>

Base Reuse

global

Application

<<layer>>

Business

Services

<<layer>>

Necessary because the

Application Layer must

have access to the core

distribution mechanisms

provided with Java RMI.

24

Registration

<<layer>>

Application

Example: Application Layer

25

Security

GUI FrameworkSecure Interfaces

Application
<<layer>>

Business
Services

<<layer>>

<<layer>>

Application

<<layer>>

Business Services

Example: Application Layer Context

University Artifacts

Registration

External System

Interfaces

26

Example: Business Services Layer

CourseCatalogSystem

<<subsystem>>

External System

Interfaces

University

Artifacts

ObjectStore

Support

<<layer>>

Business Services

GUI

Framework

Secure

Interfaces

Security

<<subsystem>>

Security

Manager

BillingSystem

<<subsystem>>

27

Middleware
<<layer>>

Business
Services

<<layer>>

Example: Business Services Layer Context

java.sqlcom.odi

<<layer>>

Middleware

BillingSystem
<<subsystem>>

CourseCatalogSystem
<<subsystem>>

External System
Interfaces

University
Artifacts

ObjectStore
Support

<<layer>>

Business Services

GUI

Framework

Secure

Interfaces

Security

<<subsystem>>

Security
Manager

28

com.odi

Database
(from com.odi)

Session
(from com.odi)

Transaction
(from com.odi)

Map
(from com.odi)

java.sql

ResultSet
(from com.odi)

Connection
(from com.odi)

Statement
(from com.odi)

DriverManager
(from com.odi)

Example: Middleware Layer

<<layer>>

Middleware

29

7 RunTime Architecture

30

31

Describe the Run-time Architecture in Context

[Early
Elaboration

Iteration]
[Inception

Iteration (Optional)]

Define a Candidate
Architecture

Perform
Architectural

Synthesis

Analyze Behavior

Refine the
Architecture

Design
Components

Design the
Database

(Optional)Describe the
Run-time Architect

Architecture

32

33

34

Describe the Run-time Architecture Steps

 Analyze concurrency
requirements

 Identify processes and threads

 Identify process lifecycles

 Map processes onto the
implementation

 Distribute model elements
among processes

35

36

37

38

39

40

41

42

43

44

 Class diagrams

 Active classes as processes/threads

 Composition relationships from processes/threads
to classes

 Composition relationships from processes/threads
to subsystems

Class NameProcess Name

<<process>>

Process Name

<<process>>

Process Name

<<process>>

Modeling the Mapping of Elements to Processes

Thread Name

<<thread>>

<<subsystem>>

Subsystem Name

45

46

47

48

8 Describe Distribution

49

50

Describe

Distribution

Implementation Model

Describe Distribution Overview

Software

Architecture

Document

Deployment Model

Design Model

Supplementary

Specifications

51

Key Concepts: The Deployment View

The Deployment View is an “architecturally significant”

slice of the Deployment Model.

Process View Deployment View

Logical View

Use-Case View

Implementation View

End-user

Functionality

Programmers

Software management

Performance, scalability, throughput

System integrators System topology, delivery,

installation, communication

System engineering

Analysts/Designers

Structure

52

<<legacy RDBMS>>

Course Catalog

Review: Example: Deployment Diagram with Processes

<<Campus LAN>>

<<Campus LAN>><<Campus LAN>>

<<application server>>

Registration Server

<<client workstation>>

PC

CourseCatalogSystemAccess

CourseRegistrationProcess

BillingSystemAccess

Billing

System

<<legacy>>

0..2000

1

1

1

1

1

53

Why Distribute?

 Reduce processor load

 Special processing
requirements

 Scaling concerns

 Economic concerns

 Distributed access to the
system

54

Distribution Patterns

 Client/Server

 3-tier

 Fat Client

 Fat Server

Distributed

Client/Server

 Peer-to-peer

55

Thinner client, thicker server

Database Server(s)

Client/Server Architectures

Application

Business Object

Services

Client A

Business Object

Engine

Business Object

Services

Business Object

Engine

Business Object Server

COM

MTS

Beans

ETS

Client B

Application

DCOM

ADO/R
CORBA Beans

Client C

WWW Browser

Web Server

HTML

CGI
ASP Java

Business Object

Services

Business Object

Engine

56

Application Services

Business Services

Data Services

Client/Server: Three-Tier Architecture

Database Server(s)

Business Object

Services

Business Object

Engine

Business Object Server

COM

MTS

Beans

ETS

Client B

Application

DCOM

ADO/R
CORBA Beans

57

Application Services

Business Services

Data Services

Client/Server: “Fat Client” Architecture

Application

Business Object

Services

Client A

Business Object

Engine

Database Server(s)

58

Application Services

Business Services

Data Services

Client/Server: Web Application Architecture

Client C

WWW Browser

Web Server

HTML

CGI
ASP Java

Business Object

Services

Business Object

Engine

Database Server(s)

59

Application

Services

Business

Services

Data Services

Peer-to-Peer Architecture

Business Object

Services

Business Object

Engine

COM

MTS

Beans

ETS

Application

DCOM

ADO/R
CORBA Beans

Business Object

Services

Business Object

Engine

COM

MTS

Beans

ETS

Application

DCOM

ADO/R
CORBA Beans

60

Describe Distribution Steps

 Define the network configuration

 Allocate processes to nodes

 Define the distribution mechanism

61

Describe Distribution Steps

 Define the network configuration

 Allocate processes to nodes

 Define the distribution mechanism

62

The Network Configuration

 End-user workstation nodes

 ”Headless" processing
server nodes

 Special configurations

Development

 Test

 Specialized processors

63

Review: What Is a Node?

 Represents a run-time
computational resource
 Generally has at least memory

and often processing
capability.

 Types:
 Device

• Physical computational
resource with processing
capability.

• May be nested

 Execution Environment
• Represent particular

execution platforms

<<exe env>>

EE Name

<<device>>

Device Name

<<device>>

Sub Device

Name

64

Review: What Is a Connector?

 A connector represents a:

Communication mechanism

• Physical medium

• Software protocol

<<application server>>

Server
<<RS-232>>

<<100-T Ethernet>>

Connector

<<client workstation>>

Console

<<client workstation>>

Kiosk

65

Review: Example: Deployment Diagram

<<legacy RDBMS>>

Course Catalog

<<Campus LAN>>

<<Campus LAN>><<Campus LAN>>

<<application server>>

Registration Server

<<client workstation>>

PC

Billing
System

<<legacy>>

0..2000

1

1

1

1

1

66

Describe Distribution Steps

 Define the network configuration

 Allocate processes to nodes

 Define the distribution mechanism

67

Process-to-Node Allocation Considerations

 Distribution patterns

 Response time and system throughput

 Minimization of cross-network traffic

 Node capacity

 Communication medium bandwidth

 Availability of hardware and
communication links

 Rerouting requirements

68

<<legacy RDBMS>>

Course Catalog

Review: Example: Deployment Diagram with Processes

<<Campus LAN>>

<<Campus LAN>><<Campus LAN>>

<<application server>>

Registration Server

<<client workstation>>

PC

CourseCatalogSystemAccess

CourseRegistrationProcess

BillingSystemAccess

Billing

System

<<legacy>>

0..2000

1

1

1

1

1

69

What is Deployment?

 Deployment is the assignment, or mapping,
of software artifacts to physical nodes
during execution.

 Artifacts are the entities that are deployed onto
physical nodes

• Processes are assigned to computers

 Artifacts model physical entities.

 Files, executables, database tables, web pages,
etc.

 Nodes model computational resources.

 Computers, storage units.

70

Example: Deploying Artifacts to Nodes

<<client workstation>>

PC

StudentApplication

<<client workstation>>

PC

<<process>>

StudentApplication

<<deploy>>

<<client workstation>>

PC

<<process>>

StudentApplication

71

What is Manifestation?

 The physical implementation of a model
element as an artifact.

 A relationship between the model element and
the artifact that implements it

• Model elements are typically implemented as

a set of artifacts.

Source files, executable files, documentation file

72

Example: Manifestation

<<client workstation>>

PC

<<process>>

StudentApplication

<<deploy>>

MainStudentForm

<<manifest>>

<<header>>

MainStudentForm

<<source>>

MainStudentForm

<<manifest>>

<<manifest>>

73

What is a Deployment Specification?

 A detailed specification of the parameters of
the deployment of an artifact to a node.

 May define values that parameterize the
execution

74

Example: Deployment Specification

<<client workstation>>

PC

<<process>>

StudentApplication

<<deploy>>

MainStudentForm

<<manifest>>

<<header>>

MainStudentForm

<<source>>

MainStudentForm

<<manifest>>

<<manifest>>

<<deploymentSpec>>

StuAppDeploy

execution =

priority =

location =

75

Describe Distribution Steps

 Define the network configuration

 Allocate processes to nodes

 Define the distribution mechanism

76

Distribution Mechanism

Remote Method

Invocation (RMI)

Analysis

Mechanism

(Conceptual)

Design

Mechanism

(Concrete)

Implementation

Mechanism

(Actual)

Java 1.2 from SunDistribution

 RMI was chosen as the implementation
mechanism for distribution

77

Design Mechanisms: Distribution: RMI

 Distribution characteristics
 Latency

 Synchronicity

 Message Size

 Protocol

78

Remote Method Invocation (RMI) (continued)

One
Instance
per node

For all classes that realize the Remote

interface, a remote stub and a remote

skeleton are created. These classes handle

the communication that must occur to

support distribution.

Naming.

lookup(name : String) : Remote

(from java.rmi)

SampleDistributedClass

doSomething(aParameter : SamplePassedData)

<<role>>

Remote
(from java.rmi)

SampleDistributedClassClient
<<role>>

SamplePassedData
<<role>>

Any Java class that you want to

pass as an argument to an

operation on a remote interface

must realize the Serializable

Interface.

UnicastRemoteObject
(from Server)

To "distribute" a class in Java, you must define an interface

that inherits from Remote. The distributed class needs to

realize the defined Remote interface and also inherit from

(extend) the UnicastRemoteObject.

ISampleDistributedClass

doSomething(aParameter : SamplePassedData)

<<Interface>>

Serializable
(from java.io)

Roles to be filled by the

designer applying the

mechanism

79

<<layer>>

Business Services

Example: Incorporating RMI

<<layer>>

Middleware

<<layer>>

Application

University Artifacts

(from Business Services)

Middleware
<<layer>>

Application
<<layer>>

Business
Services

<<layer>>

java.rmi

<<interface>>

remote
(from java.rmi)

Naming
(from java.rmi)

UnicastRemote

Object
(from Server)

Server

<<interface>>

Serializable
(from java.io)

Java.io

Registration

Package

(from Application)

