
1

9 UC Design

2

3

4

5

6

7

8

Representing Subsystems on a Sequence Diagram

 Interfaces
 Represent any model element that realizes the interface

 No message should be drawn from the interface

 Subsystem Component
 Represents a specific subsystem

 Messages can be drawn from the subsystem

Object A Interface Object B

1: Message 1
2: Message 2

Object A Subsystem

Component

Object B

1: Message 1
2: Message 2X

Invalid message Valid message

9

All other analysis classes are mapped directly to

design classes.

Analysis Classes Design Elements

Example: Incorporating Subsystem Interfaces

BillingSystem

//submit bill()

<<boundary>> Billing System
<<subsystem>>

IBillingSystem

submitBill(forTuition : Double, forStudent : Student)

CourseCatalogSystem

//get course offerings()

<<boundary>>

ICourseCatalogSystem

getCourseOfferings(forSemester : Semester, forStudent : Student) : CourseOfferingList

initialize()

Course Catalog System
<<subsystem>>

10

Example: Incorporating Subsystems (Before)
Analysis class to be replaced

: Student

: RegisterForCoursesForm : RegistrationController : Schedule : Student: CourseCatalogSystem

Student wishes
to create a new
schedule

1. // create schedule()

1.2. // display course offerings()

1.1. // get course offerings()

1.1.1. // get course offerings(forSemester)

1.3. // display blank schedule()
A blank schedule
is displayed for the
students to select
offerings

A list of the available
course offerings for this
semester are displayed

Select Offerings

Submit Schedule

ref

ref

11

Example: Incorporating Subsystems (After)

: RegisterForCoursesForm : RegistrationController : Schedule : Student: ICourseCatalogSystem

1: // create schedule

1.1: // get course offerings
1.1.1: getCourseOfferings

1.2: // display course offerings
A list of the available
course offerings for this
semester are displayed

Replaced with subsystem interface

A blank schedule is
displayed for the Student
to select offerings

Student wishes to
create a new
schedule

1.3: // display blank schedule

Select Offerings

Submit Schedule

ref

ref

12

Example: Incorporating Subsystem Interfaces (VOPC)

ICourseCatalogSystem

getCourseOfferings()
initialize()

(from External System Interfaces)

<<Interface>>

RegisterForCoursesForm

// submit schedule()
// display course offerings()
// display schedule()
// save schedule()

// create schedule()
// select 4 primary and 2 alternate offerings()
// display blank schedule()

(from Registration)

<<boundary>>

Student.

- name
- address
- studentID : int

// addSchedule()
// getSchedule()
// hasPrerequisites()
// passed()

(from University Artifacts)

<<entity>>

RegistrationController

// submit schedule()
// save schedule()
// create schedule with offerings()
// getCourseOfferings()

(from Registration)

<<control>>

0..1

0..1
registrant

1 1

Schedule

semester

// submit()
// save()
// any conflicts?()
// new()

(from University Artifacts)

<<entity>>

0..*

1

0..1

0..1

CourseOffering

number

startTime
endTime
days

// addStudent()
// removeStudent()
// new()
// setData()

(from University Artifacts)

<<entity>>

0..*

0..4

primaryCourses

0..*

0..2

alternateCourses

0..*
1

Subsystem interface

currentSchedule

13

Analysis Class Analysis Mechanism(s)

Student

CourseOffering

Course

RegistrationController

Persistency, Security

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Incorporating Architectural Mechanisms: Security

 Analysis Class to Architectural-Mechanism
Map from Use-Case Analysis

Schedule Persistency, Security

14

Analysis Class Analysis Mechanism(s)

Student

CourseOffering

Course

RegistrationController

Persistency, Security

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Incorporating Architectural Mechanisms: Distribution

 Analysis Class to Architectural-Mechanism
Map from Use-Case Analysis

Schedule Persistency, Security

15

Example: Incorporating RMI

currentSchedule

registrant

CourseOfferingList
(from University Artifacts)

Naming

+ lookup()

(from rmi)

RegisterForCoursesForm
(from Registration)

<<boundary>>

Remote
(from rmi)

<<Interface>>

RegistrationController
(from Registration)

<<Control>>

Student
(from University Artifacts)

<<Entity>>

UnicastRemoteObject
(from server)

Serializable
(from io)

<<Interface>>
Schedule

(from University Artifacts)

<<Entity>>

Distributed

Class Client

Distributed

Class

Passed Class

IRegistrationController

+ getCurrentSchedule(forStudent : Student, forSemester : Semester) : Schedule

+ deleteCurrentSchedule()

+ submitSchedule()

+ saveSchedule()

+ getCourseOfferings() : CourseOfferingList

(from Registration)

<<Interface>>

1

1

0..1

0..1

0..1

0..n

0..1

1

16

Example: Incorporating RMI (continued)

<<layer>>

Business Services

<<layer>>

Middleware

<<layer>>

Application

Middleware
<<layer>>

Application
<<layer>>

Business
Services

<<layer>>

java.rmi

<<interface>>

remote
(from java.rmi)

Naming
(from java.rmi)

UnicastRemote

Object
(from Server)

Server

<<interface>>

Serializable
(from java.io)

Java.io

Registration

Package

(from Application)
University Artifacts

(from Business Services)

17

18

19

20

21

22

23

24

25

26

27

10 Subsystem Design

28

29

30

31

32

 Distribute subsystem behavior to
subsystem elements

 Document subsystem elements

 Describe subsystem dependencies

 Checkpoints

Subsystem Design Steps

33

Subsystem Design Steps

 Distribute subsystem behavior to
subsystem elements

 Document subsystem elements

 Describe subsystem dependencies

 Checkpoints

34

 Subsystem responsibilities defined by
interface operations

Model interface realizations

 Interface may be realized by

 Internal class behavior

Subsystem behavior

ICourseCatalogSystem

getCourseOfferings ()

Initialize ()

<<interface>>

Subsystem responsibility

Subsystem Responsibilities

CourseCatalogSystem

<<subsystem>>

getCourseOfferings ()

Initialize ()

35

What Are Gates?

 A connection point
in an interaction for
a message that
comes into or goes
outside the
interaction.
 A point on the

boundary of the
sequence diagram

 The name of the
connected message
is the name of the
gate

Input gate

Output gate

sd example

: ClassName

36

Internal

subsystem

interactions

Subsystem

responsibility

Subsystem Interaction Diagrams

: Client Subsystem : Supplier Subsystem

performResponsibility()

Black box view of subsystems

37

Internal Structure of Supplier Subsystem

 Subsystem Manager
coordinates the internal
behavior of the
subsystem.

 The complete
subsystem behavior is
distributed amongst the
internal Design Element
classes.

: Subsystem Manager

: Design

Element1

: Design

Element2

Supplier Subsystem

38

Modeling Convention: Internal Subsystem Interaction

: Subsystem

Manager

: Design

Element1

: Design

Element2

performResponsibility()
doThis()

thisAgain()

doThat()

thatAgain()

sd PerformResponsibility

White box view of Supplier Subsystem

39

Example: CourseCatalogSystem Subsystem in Context

Legacy RDBMS Database Access

Subsystem

Subsystem
responsibility

: RegisterForCoursesForm : RegistrationController : Schedule : Student: CourseCatalogSystem

1: // create schedule

1.1: // get course offerings
1.1.1: getCourseOfferings

1.3: // display course offerings
A list of the available
course offerings for this
semester are displayed

A blank schedule is
displayed for the Student
to select offerings

Student wishes to
create a new
schedule

1.5: // display blank schedule

Select Offerings

Submit Schedule

ref

ref

40

Analysis Class Analysis Mechanism(s)

Student

CourseOffering

Course

RegistrationController

Persistency, Security

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Incorporating the Architectural Mechanisms: Persistency

 Analysis-Class-to-Architectural-Mechanism
Map from Use-Case Analysis

Schedule Persistency, Security

OODBMS Persistency was discussed in Use-Case Design

OODBMS

Persistency

RDBMS

Persistency

41

Example: Local CourseCatalogSystem Subsystem Interaction

persistent

Class

: Course

Offering
: Connection : Statement : ResultSet

persistencyClient

:CourseCatalog

System

dbClass

:DBCourse

Offering

persistent

ClassList

: Course

OfferingList : Course Catalog

sd getCourseOfferings

ref

JDBC Read

//execute

Query()

getCourse

Offering()

Subsystem

42

Example: Billing System Subsystem In Context
subsystem interface

: Registrar
: CloseRegistration

Form

: Course

Offering
: Schedule : Student. : Ibilling

System

: ICourseCatalog

System

: CloseRegistration

Controller

Close
registration for
each course
offering

Retrieve a list of course
offerings for the current
semester

If the maximum number of
selected primary courses have
not been committed, select
alternate course offerings).

Currently assuming tuition based on
number of offerings taken and certain
attributes of students. If different offerings
get different prices this will change slightly.

Repeat twice this
is for simplicity;
realistically, an
indefinite number
of iterations could
occur)

Finally commit or
cancel the course
offering once all
leveling has occurred

1. // close registration()

2. // close registration()

2.2. // close registration()

1.1. // is registration open?()

2.6. submitBill(Student, double)

2.3. // level()

2.1. getCourseOfferings(Semester)

2.4. // close()

2.5. getTuition()

subsystem responsibility

do the actual billing to the
student for the schedule.

Send student and tuition to
the Billing System, which will

43

Example: Local BillingSystem Subsystem Interaction

Subsystem

Billing System

Client
: BillingSystem : StudentBillingTransaction :BillingSystemInterface

: Billing System
: Student

1. submitBill(Student, double)

1.1. create(Student, double)

1.2. submit(StudentBillingTransaction)

1.1.1. // get contact info()

Retrieve the

information that must

be included on the bill

1.2.1. // open connection()

1.2.2. // process transaction()

1.2.3. // close connection()

44

45

Example: CourseCatalogSystem Subsystem Elements

Subsystem

Component

Subsystem Interface

ICourseCatalogSystem

getCourseOfferings(forSemester : Semester) : CourseOfferingList

(from External System Interfaces)

<<Interface>>

1

1

CourseOfferingList

new()

add()

(from University Artifacts)

1

0..*

CourseOffering

new()

setData()

(from University Artifacts)

<<Entity>>
Statement

executeQuery()

executeUpdate()

(from java.sql)

Connection

createStatement()

(from java.sql) ResultSet

getString()

(from java.sql)

DBCourseOfferring

create() : CourseOffering

read(searchCriteria : string) : CourseOfferingList

CourseCatalogSystem

getCourseOfferings(forSemester : Semester) : CourseOfferingList

<<subsystem >>

DriverManager

getConnection(url, user, pass) : Connection

(from java.sql)

46

Example: Billing System Subsystem Elements

Subsystem

Interface

0..1

1

Subsystem

Component

StudentBillingTransaction

create(forStudent : Student, forAmount : double)

Student

// get contact info()

(from University Artifacts)

<<Entity>>

BillingSystem

submitBill(forStudent : Student, forTuition : double)

<<subsystem>>

BillingSystemInterface

submit(theTransaction : StudentBillingTransaction)

IBillingSystem

submitBill()

(from External System Interfaces)

<<Interface>>

47

Subsystem Design Steps

 Distribute subsystem behavior to
subsystem elements

 Document subsystem elements

 Describe subsystem dependencies

 Checkpoints

48

 Subsystem dependency on a subsystem

 Subsystem dependency on a package

Subsystem Dependencies: Guidelines

Flexible,

Preferred
Server

Use with care

Client Support

<<subsystem>>
Supporting

Types

Client Support

<<subsystem>>

Server Support

<<subsystem>>

49

Example: CourseCatalogSystem Subsystem Dependencies

java.sql

(from Middleware)

CourseCatalogSystem

(from Business Services)

<<subsystem>> External System

Interfaces

(from Business Services)

University Artifacts

(from Business Services)

50

Example: BillingSystem Subsystem Dependencies

BillingSystem

(from Business Services)

<<subsystem>>

External System

Interfaces

(from Business Services)

University Artifacts

(from Business Services)

51

11 Class Design

52

53

54

55

56

Class Design Steps

 Create Initial Design
Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case
Collisions

 Handle Nonfunctional
Requirements in General

 Checkpoints

57

Class Design Steps

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

58

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

Class Design Steps

59

 Significant, dynamic attributes

 Existence and non-existence of certain links

Identify and Define the States

The maximum number of students per course offering is 10

numStudents < 10 numStudents > = 10

Link to Professor

exists

Link to Professor

doesn’t exist
Professor

CourseOffering

Open Closed

0..*

0..1 Assigned Unassigned

60

 Look at the class interface operations

Events: addProfessor,

removeProfessor

Identify the Events

CourseOffering

+ addProfessor()
+ removeProfessor()

0..*

0..1
Professor

61

Identify the Transitions

 For each state, determine what events cause
transitions to what states, including guard
conditions, when needed

 Transitions describe what happens in response
to the receipt of an event

CourseOffering

+ addProfessor()
+ removeProfessor()

0..*

0..1
Professor

Assigned

Unassigned

removeProfessor addProfessor

62

StateC

Exit/someAction

StateB

Do/anActivity

StateA

Add Activities

 Entry

 Executed when the
state is entered

 Do

 Ongoing execution

 Exit

 Executed when the
state is exited

Entry/anAction

63

Example: State Machine

addStudent / numStudents = numStudents + 1

Unassigned

Assigned

Full

Canceled

do/ Send cancellation notices

Committed

do/ Generate class roster

closeRegistration [has Professor assigned]

close

/ numStudents = 0

addProfessor

closeRegistration

removeStudent [numStudents >0]/ numStudents = numStudents - 1

cancel

removeProfessor

[numStudents = 10]

close[numStudents < 3]

closeRegistration[numStudents >= 3]

close[numStudents >= 3]

addStudent /

numStudents = numStudents + 1

cancel

removeStudent[numStudents > 0] / numStudents = numStudents - 1

close

[numStudents = 10]
cancel

Example: State Machine
addStudent / numStudents = numStudents + 1

Unassigned

Assigned

Full

Canceled

do/ Send cancellation notices

Committed

do/ Generate class roster

closeRegistration [has Professor assigned]

close

/ numStudents = 0

addProfessor

closeRegistration

removeStudent [numStudents >0]/ numStudents = numStudents - 1

cancel

removeProfessor

[numStudents = 10]

close[numStudents < 3]

closeRegistration[numStudents >= 3]

close[numStudents >= 3]

addStudent /

numStudents = numStudents + 1

cancel

removeStudent[numStudents > 0] / numStudents = numStudents - 1

close

[numStudents = 10]
cancel

65

Example: State Machine with Nested States and History
superstate

substate

addStudent /

numStudents = numStudents + 1

Open

Unassigned

Assigned

H

add a professor

Closed

Canceled

do/ Send cancellation notices

Full

Committed

do/ Generate class roster

closeRegistration

close

remove a professor

close[numStudents < 3]

[numStudents = 10]

closeRegistration[numStudents >= 3]

close[numStudents >= 3]

closeRegistration [has Professor assigned]

close

/ numStudents = 0

removeStudent[numStudents > 0] / numStudents = numStudents - 1

cancel
cancel

Example: State Machine with
Nested States and Historysuperstate

substate

addStudent /

numStudents = numStudents + 1

Open

Unassigned

Assigned

H

add a professor

Closed

Canceled

do/ Send cancellation notices

Full

Committed

do/ Generate class roster

closeRegistration

close

remove a professor

close[numStudents < 3]

[numStudents = 10]

closeRegistration[numStudents >= 3]

close[numStudents >= 3]

closeRegistration [has Professor assigned]

close

/ numStudents = 0

removeStudent[numStudents > 0] / numStudents = numStudents - 1

cancel
cancel

67

 Events may map to operations

 Methods should be updated with state-specific
information

 States are often represented using attributes
 This serves as input into the “Define Attributes” step

How Do State Machines Map to the Rest of the Model?

Open

CourseOffering

- numStudents

+ addStudent()

Closed

[numStudents>=10]

addStudent / numStudents = numStudents + 1

[numStudents<10]

68

Class Design Steps

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

69

- name

- address

- nextAvailID : int

- studentID : int

- dateOfBirth : Date

Student

Example: Define Attributes

RegistrationController

0..1

ICourseCatalogSystem
<< interface >>

Schedule

CourseOffering

- number : String = “100”

- startTime : Time

- endTime : Time

- day : String

- /numStudents : int = ()

- semester : Semester

0..1

0..1

0..1

+ registrant

+ currentSchedule

0..*

0..40..2

0..*

+ alternateCourses

1
0..*

+ primaryCourses

70

Class Design Steps

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

71

Example: Define Dependencies (before)

<<interface>>

ICourseCatalogSystem

+ getCourseOfferings ([in] forSemester : Semester) : CourseOfferingList

Student

- name
- address
- StudentID : int

+ addSchedule ([in] aSchedule : Schedule)
+ getSchedule ([in] forSemester : Semester) : Schedule
+ hasPrerequisites ([in] forCourseOffering : CourseOffering) : boolean
passed ([in] aCourseOffering : CourseOffering) : boolean

RegistrationController

+ // submit schedule ()
+ // save schedule ()
+ // create schedule with offerings ()
+ // get course offerings ()

0..1

0..1 + registrant

0..* 1

+ courseCatalog

Schedule

- semester : Semester

+ submit ()
+ //save ()
any conflicts? ()
+ //create with offerings()

0..*

1

0..1

0..1

+ currentSchedule

CourseOffering

- number : String = "100"
- startTime : Time
- endTime : Time
- day : String

+ addStudent ([in] aStudentSchedule : Schedule)
+ removeStudent ([in] aStudentSchedule : Schedule)

+ new ()
+ setData ()

0..*

0..4

+ primaryCourses

0..*

0..2

alternateCourses

72

Example: Define Dependencies (after)

<<interface>>

ICourseCatalogSystem

+ getCourseOfferings ([in] forSemester : Semester) : CourseOfferingList

RegistrationController

+ // submit schedule ()
+ // save schedule ()
+ // create schedule with offerings ()
+ // get course offerings ()

0..1

+ registrant

Schedule

- semester : Semester

+ submit ()
+ //save ()
any conflicts? ()
+ //create with offerings()

0..*

0..1

0..1

+ currentSchedule

CourseOffering

- number : String = "100"
- startTime : Time
- endTime : Time
- day : String

+ addStudent ([in] aStudentSchedule : Schedule)
+ removeStudent ([in] aStudentSchedule : Schedule)

+ new ()
+ setData ()

0..4

0..*

0..2
alternateCourses

Global visibility

Parameter visibility

Field visibility Field
visibility

Student

- name
- address
- StudentID : int

+ addSchedule ([in] aSchedule : Schedule)
+ getSchedule ([in] forSemester : Semester) : Schedule
+ hasPrerequisites ([in] forCourseOffering : CourseOffering) : boolean
passed ([in] aCourseOffering : CourseOffering) : boolean

0..1 1

0..*

+ primaryCourses

73

Class Design Steps

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

74

Example: Composition

1

0..*

ScheduleStudent

RegisterForCoursesForm 1

1

RegistrationController

75

Example: Attributes vs. Composition

Composition of

separate class

Attribute

Student

- name

- address

- nextAvailID : int

- StudentID : int

- dateofBirth : Date

+ addSchedule ()

+ getSchedule ()

+ delete Schedule ()

+ hasPrerequisites ()

hasPassed ()

Schedule

+ submit ()

+ //save ()

any conflicts? ()

+ //create with offerings ()

+ new ()

+ passed ()

- semester : Semester

0..*

1

76

Association Class

 A class is
“attached” to an
association

 Contains
properties of a
relationship

 Has one
instance per link

<<entity>>
ScheduleOfferingInfo

- status

+ // is selected ()

+ // mark as selected ()

+ // mark as cancelled ()

CourseOffering
Schedule

0..* 0..4+ primaryCourses

+ alternateCourses0..* 0..2

PrimaryScheduleOfferingInfo

- grade

+ // is enrolled in? ()

+ // mark as enrolled in ()

+ // mark as committed ()

<<entity>>

77

Example: Association Class Design

Design Decisions

0..* 0..4+ primaryCourses

+ alternateCourses0..* 0..2

PrimaryScheduleOfferingInfo

- grade

+ // is enrolled in? ()
+ // mark as enrolled in ()
+ // mark as committed ()

Schedule CourseOffering

CourseOfferingSchedule

1

0..*- theCourseOffering

+ alternateCourses0..* 0..2

PrimaryScheduleOfferingInfo

- grade

+ // is enrolled in? ()
+ // mark as enrolled in ()
+ // mark as committed ()

- primaryCourseOfferingInfo

0..4

1

78

What Is a Parameterized Class (Template)?

 A class definition that defines other classes

 Often used for container classes

Some common container classes:

• Sets, lists, dictionaries, stacks, queues

ParameterizedClass

Formal Arguments

List

Item

79

Instantiating a Parameterized Class

ParameterizedClass

Formal Arguments

InstantiatedClass ActualArgument

<<bind>> (ActualArgument)

80

Example: Instantiating a Parameterized Class

Before

After
List

Item

CourseOfferingList CourseOffering

<<bind>> (CourseOffering)

1

0..*

CourseOfferingList CourseOffering1

0..*

81

Multiplicity Design: Optionality

 If a link is optional, make sure to include an
operation to test for the existence of the link

Professor CourseOffering

+ isTeaching () : boolean

0..1

0..*
+ hasProfessor () : boolean

82

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

Class Design Steps

83

What is Internal Structure?

 The interconnected parts and connectors
that compose the contents of a structured
class.

 It contains parts or roles that form its structure
and realize its behavior.

Connectors model the communication link
between interconnected parts.

The interfaces describe what a class must do; its internal

structure describes how the work is accomplished.

84

Review: What Is a Structured Class?

 A structured class contains parts or roles
that form its structure and realize its
behavior

Describes the internal implementation structure

 The parts themselves may also be
structured classes

Allows hierarchical structure to permit a clear
expression of multilevel models.

 A connector is used to represent an
association in a particular context

Represents communications paths among parts

85

What Is a Connector?

 A connector models the communication link
between interconnected parts. For example:

Assembly connectors

• Reside between two elements (parts or ports)

in the internal implementation specification of

a structured class.

Delegation connectors

• Reside between an external (relay) port and

an internal part in the internal implementation

specification of a structured class.

86

Review: What Is a Port?

 A port is a structural feature that
encapsulates the interaction between the
contents of a class and its environment.

Port behavior is specified by its provided and
required interfaces

• They permit the internal structure to be

modified without affecting external clients

External clients have no visibility to internals

 A class may have a number of ports

Each port has a set of provided and required
interfaces

87

Review: Port Types

 Ports can have different implementation
types

Service ports are only used for the internal
implementation of the class.

Behavior ports are used where requests on the
port are implemented directly by the class.

Relay ports are used where requests on the
port are transmitted to internal parts for
implementation.

88

Review: Structure Diagram With Ports

Structured Class Name

partA partB

Behavior Port

Relay Port

Service Port

Assembly Connector

Delegation Connector

89

Review: Structure Diagram

Course Registration System

: StudentManagementSystem

: CourseCatalogSystem: BillingSystem

90

Example: Structure Diagram Detailed

Course Registration System

StudentManagementSystem

: CourseCatalogSystem

: RegistrationController : MainStudentForm

: BillingSystem

91

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

Class Design Steps

Light

92

Example: Generalization Constraints

Asset

Real EstateBank Account Security

Savings Checking
Stock Bond

{disjoint}

{disjoint,complete} {disjoint}

End of inheritance hierarchy

Multiple

Inheritance

not supported

93

Example: Generalization Constraints (continued)

Vehicle

AmphibiousVehicle

WaterVehicleLandVehicle

{overlapping}

Multiple

inheritance

supported

94

Class Design Steps

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

95

Resolve Use-Case Collisions

 Multiple use cases may simultaneously access
design objects

 Options

Use synchronous messaging => first-come first-
serve order processing

 Identify operations (or code) to protect

Apply access control mechanisms

• Message queuing

• Semaphores (or “tokens”)

• Other locking mechanism

 Resolution is highly dependent on implementation
environment

96

Class Design Steps

 Create Initial Design Classes

 Define Operations

 Define Methods

 Define States

 Define Attributes

 Define Dependencies

 Define Associations

 Define Internal Structure

 Define Generalizations

 Resolve Use-Case Collisions

 Handle Non-Functional Requirements in General

 Checkpoints

97

Handle Non-Functional Requirements in General

Analysis Class Analysis Mechanism(s)

Student

Schedule

CourseOffering

Course

RegistrationController

Persistency, Security

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Persistency, Security

Design

Guidelines

Remote Method

Invocation (RMI)

Persistency

Analysis

Mechanism

(Conceptual)

Design

Mechanism

(Concrete)

Implementation

Mechanism

(Actual)

OODBMS

RDBMS

JDBC

ObjectStore

Java 1.2 from Sun

Legacy

Data

New

Data

Distribution

Persistency

SomeDesignClass

