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A random variable X : Ω → R is an F -measurable real-valued function on Ω.

A random variable is said to have a property almost surely (P ) if it has the

property on a set F with P (F ) = 1. We often abbreviate and write a.s.

The expected value E[X] of a random variable X is defined via

E[X] =

∫

Ω

X(ω) dP (ω) =

∫

Ω

X(ω) P (dω).

1.1 Distribution measures and distribution functions

The distribution measure of a random variable is a measure on the Borel σ-

algebra of subsets of R that tells you what the probability is that X(ω) ∈ B ⊂ R.

That is, for any Borel set B ⊂ R,

µ(B) = P
(
X−1(B)

)
= P ({ω ∈ Ω : X(ω) ∈ B}).

Remark. We will sometimes write {X ∈ B} when we mean X−1(B).

The distribution function F : R→ [0, 1] of a random variable X is defined via

FX(x) = µ ((−∞, x]) .

That is, FX(x) is the probability that X(ω) ≤ x.

If FX is absolutely continuous, then it has a density f : R→ R+ such that

F (x) =

x∫

−∞

f(y) dy.

In particular, if FX is differentiable everywhere, then fX(x) = F ′
X(x).
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1.2 Information and σ-algebras

When considering σ-algebras G ⊂ F one may interpret G as the amount of avail-

able information. Intuitively, if our information is given by G, we can distinguish

between the events in G in the sense that for any event G ∈ G we know with perfect

certainty whether or not it has occurred. Given this, it makes sense to say that

if G ⊂ H, then H contains no less information than G. Also, it is tempting to say

that G = σ {singletons} corresponds to full information since it should enable us

to tell exactly what ω has been drawn. But this turns out to be an awkward way

of defining full information in general although admittedly it makes perfect sense

when Ω is a finite set. Instead, we will define full information as G = F , since then

our information enables us to forecast perfectly the realized value of every random

variable. Finally, we will say that G = {Ω,∅} (the trivial σ-algebra) corresponds to

no information.

Alternatively, we might tell the following story. Suppose our σ-algebra G is generated

by a finite partition P.

(i) Someone (Tyche, the norns, the dean, or whoever it is) chooses an outcome ω ∈ Ω

without telling us which.

(ii) While we don’t know which ω ∈ Ω has been chosen, we are, however, told (by

an oracle, Hugin & Munin, or the Gazette or whatever) in which component Pk ∈ P
ω lies. In practice, this could be arranged by allowing us to observe a stochastic

variable defined via

X (ω) =
n∑

k=1

kIPk
(ω) . (1)
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To flesh this out a little bit more, you may want to think that getting ‘more in-

formation’ in this context would correspond to having a ‘finer’ partition, where a

partition Q finer than P arises from chopping up the components of P. It follows,

of course, that σ (P) ⊂ σ (Q), which was our original (and more general) definition

of ‘more information’.

In any case, notice that the axioms that characterize a σ−algebra accord well with

our intuitions about information. Obviously, we should know whether Ω, since it

always occurs by definition. Also, if we know whether A, we should know whether

not-A too. Similarly, if we know whether A and whether B, we should know whether

A∪B. Countable unions are perhaps a little trickier to motivate intuitively; they are

there essentially for technical reasons. In particular, they allow us to prove various

limit theorems which are part of the point of the Lebesgue theory.

In economic modelling, it is plausible to allow decisions to depend only upon the

available information. Mathematically, this means that if the agent’s information

is given by G, then her decision must be a G-measurable random variable. The

interpretation of this is that the information in G suffices to give us perfect knowledge

of the decision. Thus when it is time for the agent to act, she knows precisely what

to do.

At this stage it is worth thinking about what it means for a stochastic variable X

to be G-measurable. Intuitively, it means that the information in G suffices in order

to know the value X (ω). To make this more concrete, suppose that G is generated

by a partition P. Then for X to be G-measurable, X has to be constant on each

element Pk ∈ P. It follows that knowing which element Pk has occurred is enough
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to be able to tell what the value of X (ω) must be.

As a further illustration of the fact that σ-algebras do a good job in modelling

information, we have the following result.

Definition. Let {Xα, α ∈ I} be a family of random variables. Then the σ-algebra

generated by {Xα, α ∈ I}, denoted by σ {Xα, α ∈ I} is the smallest σ-algebra G
such that all the random variables in {Xα, α ∈ I} are G-measurable.

Remark. Such a σ-algebra exists. (Recall the proof: consider the intersection of

all σ-algebras on Ω such that {Xα, α ∈ I} are measurable.)

Proposition. Let X = {X1,X2, ..., Xn} be a finite set of random variables. Let Z be

a random variable. Then Z is σ {X}-measurable iff there exists a Borel measurable

function f : Rn → R such that, for all ω ∈ Ω,

Z (ω) = f (X1 (ω) , X2 (ω) , ..., Xn (ω)) . (2)

Proof. The case when σ {X} is generated by a finite partition (i.e. when the

mapping T : Ω → Rn defined via T (ω) = (X1,X2, ..., Xn) is F -simple) is not too

hard and is left as an exercise. For the rest, see Williams (1991).

2 The conditional expectation

Intuitively, the conditional expectation is the best predictor of the realization of a

random variable given the available information. By “best” we will mean the one

that minimizes the mean square error.
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A formal definition, that works for square integrable random variables, is given by

the following.

Definition Let G ⊂ F be a σ-algebra and let X ∈ L2 (Ω,F , P ) . Then the condi-

tional expectation Y = E [X|G] is the projection of X onto L2 (Ω,G, P ).

Remark. By the Hilbert space projection theorem, the conditional expectation

solves

Y = min
Z∈L2(Ω,G,P )

E
[
(X − Z)2] . (3)

Remark. The conditional expectation is itself a random variable. Its value is

uncertain because it depends on precisely which events G ∈ G actually occur. In

other words, it is a (contingent) forecasting rule whose output (the forecast) depends

on the content of the information revealed. For example, suppose our information

set is such that we know whether the president has been shot. Then our actions

may depend on whether he is or is not shot.

The projection-based definition is intuitively the most appealing one, but unfortu-

nately it only applies to square integrable stochastic variables. One way to extend

the definition to merely integrable stochastic variables is to note that L2 is dense in

L1 and define E [X|G] as the limit of the sequence {E [Xn|G]} where Xn ∈ L2 and

Xn → X (in L1). Another way is the following.

Proposition. Let G ⊂ F be a σ-algebra and let X ∈ L1 (Ω,F , P ) . Then there is

an a.s. (P ) unique integrable random variable Z such that

1. Z is G-measurable and
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2.
∫
G

XdP =
∫
G

ZdP for each G ∈ G.

Using this result, we define E [X|G] = Z.

Proof. The Radon-Nikodym theorem.

Remark. Since the conditional expectation is only a.s. (P ) unique, most of the

equations below strictly speaking need a qualifying ‘a.s. (P )’ appended to them

to be true. But since this is a bit tedious, we adopt instead the convention that

the statement X = Y means P ({ω ∈ Ω : X (ω) = Y (ω)}) = 1. If two random

variables W and Z both qualify as the conditional expectation E [X|G] , then we

will sometimes call them versions of E [X|G].

This L1-based definition can be intuitively motivated independently of the projection-

based definition in the following way. On events such that we know whether they

have occurred, our best guess of X should track X perfectly.

In any case, it had better be true that our two definitions of the conditional expec-

tation coincide when they both apply, i.e. on L1 ∩ L2 = L2. They do. You may

want to try to prove this for yourself.

Having defined the conditional expectation with respect to a σ–algebra, we now

define the conditional expectation with respect to a family of stochastic variables.

Definition. Let Y ∈ L1 (Ω,F , P ) and let {Xα, α ∈ I} be a family of random vari-

ables. Then the conditional expectation E [Y | {Xα, α ∈ I}] is defined as E [Y |σ {Xα, α ∈ I}]

Since E [Y |X] is a σ (X)−measurable random variable, there is a Borel function f

such that E [Y |X] = f (X). Sometimes we use the notation f (x) = E [Y |X = x]
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where the expression on the right hand side is defined by the left hand side.

Definition. Let Y ∈ L1 (Ω,F , P ) and let X be a stochastic variable. Then the

function E [Y |X = x] is defined as any Borel function f : R→ R with the property

that f (X) is a version of E [Y |X] . Note that E [Y |X = x] is not always uniquely

defined, but that this does not matter in practice.

Having defined the conditional expectation, we now note some of its properties. Let

the given probability space be (Ω,F ,P ).

Proposition. Let G = {Ω,∅}. Then E [X|G] = E [X].

Proof. Exercise.

Proposition. Let X and Y be integrable random variables, let G ⊂ F be a σ-

algebra and let α, β be scalars. Then

E [αX + βY |G] = αE [X|G] + βE [Y |G] (4)

Proof. Exercise.

Proposition [Law of iterated expectations]. Let X ∈ L1 (Ω,F ,P ) and let G ⊂ H ⊂ F
be σ-algebras. Then

E [E [X|H] |G] = E [X|G] (5)

Proof. We check that the left hand side satisfies the conditions for being the con-

ditional expectation of X with respect to G. Clearly it is G-measurable. Now

let G ∈ G and we have, since G ⊂ H and consequently G ∈ H,
∫

G

E [E [X|H] |G] dP =

∫

G

E [X|H] dP =

∫

G

XdP. (6)
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Corollary. Let X ∈ L1 (Ω,F ,P ) and let G ⊂ F be a σ-algebra. Then E [E [X|G]] =

E [X].

Proposition. Let X and Y be random variables such that XY is integrable. Let

G ⊂ F be a σ-algebra and suppose X is G-measurable. Then

1. E [X|G] = X and

2. E [XY |G] = XE [Y |G].

Proof. (1) is trivial. To prove (2), note first that, the right hand side is G-

measurable (why?). To show that the right hand side integrates to the right thing,

suppose X = IG where G ∈ G. Let F ∈ G. Then

∫

F

XE [Y |G] dP =

∫

F

IGE [Y |G] dP =

∫

G∩F

E [Y |G] dP =

= {(G ∩ F ) ∈ G!} =

∫

G∩F

Y dP =

∫

F

IGY dP =

=

∫

F

XY dP

(7)

To show the more general case, show it for simple functions and then use the Mono-

tone Convergence Theorem.
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We end the discussion of the conditional expectation by defining the conditional

probability of an event. We then note with satisfaction that our formal definition

substantiates our claim above that if our information is given by G, then we know,

for all events G ∈ G whether or not they have occurred.

Definition. Let (Ω,F , P ) be a probability space and let G ⊂ F be a σ−algebra.

Let A ∈ F . Then the conditional P (A|G) probability of A given G is defined via

P (A|G) = E [IA|G] (8)

It follows from this definition (why?) that if G ∈ G then P (A|G) = 1 when G occurs

and P (A|G) = 0 when it does not.

2.1 Stochastic processes

Let (Ω,F , P ) be a probability space. A stochastic process in discrete time is a

mapping X : Z+×Ω → R such that, for each fixed t ∈ Z+, the mapping ω → X(t, ω)

is a random variable. For each fixed ω ∈ Ω, the mapping t → X(t, ω) is called a

trajectory.

The definition of a stochastic process in continuous time is the same, except that

Z+ is replaced by R+.
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