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GMM Notes for EC2610

1 Introduction

These notes povide an introduction to GMM estimation. Their primary purpose
is to make the reader familiar enough with GMM to be able to solve problem set
assignments. For the more theoretical foundations, properties and extensions of
GMM, or to better understand its workings, interested reader should consult any
of the standard graduate econometrics textbooks, e.g., by Greene, Wooldridge,
Hayashi, Hamilton, etc., as well as the original GMM article by Hansen (1982).
Available lecture notes for graduate econometrics courses, e.g. by Chamberlain
(Ec 2140), by Pakes and Porter (Ec 2144), also contain very useful reviews of
GMM.
Generalized Method of Moments provides asymptotic properties for estima-

tors and is general enough to include many other commonly used techniques,
like OLS and ML. Having such an umbrella to encompass many of the estimators
is very useful, as one doesn�t have to derive each estimator property separately.
With such a wide range, it is not surprising to see GMM used extensively, but
one should also be careful when it is appropriate to apply. Since GMM deals
with asymptotic properties, it works well for large samples, but does not pro-
vide an answer when the samply size is small, or what is "large" enough sample
size. Also, when applying GMM, one may forgo certain desirable properties,
like e�iciency.

2 GMM Framework

2.1 De�nition of GMM Estimator

Let xi; i = 1; :::; n be i.i.d. random draws from the unknown population distri-
bution P. For a known function  ; the parameter �0 2 � (usually also in the
interior of �) is known to satisfy the key moment condition:

E [ (xi; �0)] = 0 (1)

This equation provides the core of the GMM estimation. The appropriate
function  and the parameter �0 are usually derived from a theoretical model.
Both  and �0 can be vector valued and not necessarily of the same size. Let the
size of  be q, and the size of � be p. The mean is 0 only at the true parameter
value �0, which is assumed to be unique over some neighborhood around �0:
Along with equation (1), one also imposes certain boundary conditions for the
2nd order moment and partial derivative one:

E
�
 (xi; �0) 

0(xi; �0)
�
� � <1

and �����@2 j(x; �)@�k@�l

����� � m(x)
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for all � 2 �; where E [m(x)] <1: Also, de�ne

D � E

�
@ (xi; �0)

@�0

�
and assume, D has rank equal to p, the dimension of �:
(Note: the above conditions are su¢ cient, and properties of GMM estimators

can also be obtained under weaker conditions).
The task of the econometrician lies in obtaining estimate b� of �0 from the

key moment condition. Since there is sample of size n from the population
distribution, one may try to obtain the estimate by replacing the population
mean with a sample one:

1

n

X
i

 (xi;b�) = 0 (2)

This is a system of q equations with p unknowns. If p=q, we�re "just-
identi�ed," and under some weak conditions, one can obtain a (unique) solution
to (2) around the neighborhood of �0. When q>p, then we�re "over-identi�ed,"
and a solution will not exist for most functions  : A natural approach for the
latter case might be to try to get the left hand side as close to 0 as possible,
with "closeness" de�ned over some norm k�kAn

:

kykAn
= y0A�1n y

where An is q-by-q symmetric, positive de�nite matrix.
Another approach could be to �nd the soltuion to (2), by making some linear

combination of  j equations equal to 0. I.e. for some p-by-q matrix Cn, of rank
p, solve for:

Cn
1

n

X
i

 (xi;b�) = 0 (3)

which will give us p equations with p unknowns.
In fact, both approaches are equivalent and GMM estimation is setup to do

exactly that. That is, when p=q, GMM is just-identi�ed and we can usually
solve for b� exactly. When q>p, we�re in the over-identi�ed case and for some
appropriate matrix An (or Cn), GMM estimate b� is found by:

b� = argmin
�2�

"
1

n

X
i

 (xi; �)

#0
A�1n

"
1

n

X
i

 (xi; �)

#
(4)

(Or equivalently, solving for:equation (3)). The choice of An will be discussed
later, but for now assume An �! 	 a.s., where 	 is also symmetric and positive-
de�nite.

2.2 Asymptotic properties of GMM

Given the above setup, GMM provides two key results: consistency and as-
ymptotic normality. Consistency shows that our estiamtor gives us the "right"
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answer, and asymptotic normality provides us with variance-covariance matrix,
which we can use for hypothesis testing. More speci�cally, the estimator b�,
found via equation (3) satis�es b� �! �0 a.s. (consistency), and

p
n(b� � �0) d�! N(0;�) (5)

(asymptotic normality), where

� = ���0

and
� = (D0	�1D)�1D0	�1

(Looking at above properties, one can draw obvious similarities between the
GMM estimator, and the Delta Method).

To do hypothesis testing, let A� denote the asymptotic distribtuion. Then,
equation (5) implies: b� A� N(�0;

1

n
�)

where

� = ���0 (6)

= (D0	�1D)�1D0	�1�	�1D(D0	�1D)�1

� and D are population means de�ned over true parameter values, and 	
is the probability limit of An::When computing the variance matrix for a given
sample, one usually replaces the population mean with the sample mean; the
true parameter value with the estimated value, and 	 with An :

� = E
�
 (xi; �0) 

0(xi; �0)
�

� 1

n

X
i

 (xi;b�) 0(xi;b�)

D = E

�
@ (xi; �0)

@�0

�
� 1

n

X
i

@ (xi; �)

@�0
j�=b�

and
	 � An

The standard errors are obtained from:

SEk =

r
1

n
�kk

where �kk is the kth diagonal entry of �:
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2.3 Optimal Weighting Matrices

2.3.1 Choice of An

Having established the properties of GMM, we now turn to the choice of the
weighting matrix An and Cn:When GMM is just identi�ed, then one can usually
solve for b� from equation (2). This is equivalent for �nding a unique minimum
point in equation (4) for any positive-de�nite matrix An: Also, D will be square;
and since it has full rank, will be invertible. Then, the variance matrix will be:

� = ���0

= (D0	�1D)�1D0	�1�	�1D(D0	�1D)�1

= D�1	D0�1D0	�1�	�1DD�1	D0�1

= D�1�D0�1

As expected, the choice of An doesn�t a¤ect the asymptotic distribution for
the just-identi�ed case.
For the over-identi�ed case, the choice of the weight matrix will now matter

for b�: However, since the consistency and asymptotic normality results of GMM
do not depend on the choice of An (as long as it�s symmetric and positive
de�nite), we should get our main results again for any choice of An: In such a
case, the most common choice is the identity matrix:

An = Iq

Then, 	 = Iq and

� = (D0	�1D)�1D0	�1

= (D0D)�1D0

and the approximate variance-covariance matrix will be:

1

n
� =

1

n
���0

=
1

n
(D0D)�1D0�D(D0D)�1

(This is the format of GMM variance-covariance matrix Prof. Pakes uses in
the IO lecture notes.)
Given that one is free to choose which particular An to choose, one can try

pick the weighting matrix to give GMM other desirable properties as well, like
e¢ ciency. From equation 6, we know that:

� = (D0	�1D)�1D0	�1�	�1D(D0	�1D)�1
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Since we�re now free to pick 	; one can choose it to minimzes the variance:

	� = argmin
	
�

= argmin
	
(D0	�1D)�1D0	�1�	�1D(D0	�1D)�1

It is easy to show that the minimum is equal to:

min
	
(D0	�1D)�1D0	�1�	�1D(D0	�1D)�1 = (D0��1D)�1

which is obtained at
	� = �

The above solution has very intuitive appeal: indexes with larger variances
are assigned smaller weights in the estimation.

2.3.2 2-Step GMM estimation

The above procedure then gives rise to 2-step GMM estimation, in the spirit of
FGLS.
1. Pick An = I (equal weighting), and solve for the 1st stage GMM estimate:b�1: Since b�1 is consistent, 1nPi  (xi;

b�1) (xi;b�1)0 will be consistent estimate of
�:
2. Pick An = 1

n

P
i  (xi;

b�1) (xi;b�1)0; and obtain the 2nd stage GMM
estimate b�2. The variance matrix 1

n
b�2 will then be the smallest.

2.3.3 Choice of Cn

It should be clear by now how the equations (3) and (4) are related to each,
and correspondingly, how An and Cn are related. By actually di¤erentiating
the minimization problem in equation (4), we obtain the FOC:"

1

n

X
i

@ (xi;b�)
@�0

#0
A�1n

"
1

n

X
i

 (xi;b�)# = 0 (7)

If we now de�ne

Cn �
"
1

n

X
i

@ (xi;b�)
@�0

#0
A�1n

we have equation (7) turning into (3).
One caveat should be pointed out. We speci�ed that equation (3) is linear

combination of  j(x;b�); i.e. Cn is a matrix of constants. But in equation (7)
Cn will in general depend on the solution of the equation: b�: This can be easily
circumvented if we look at the 2nd stage GMM solution, and use the �rst stage
1st stage b�1 for Cn: That is, if in the second step, we�d normally solve:"

1

n

X
i

@ (xi;b�2)
@�0

#0
A�1n

"
1

n

X
i

 (xi;b�2)# = 0
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where An is obtained from the 1st stage. We can instead solve for a di¤erent
2nd stage estimate b�20 :"

1

n

X
i

@ (xi;b�1)
@�0

#0
A�1n

"
1

n

X
i

 (xi;b�20)# = 0
Since b�1 satis�es consistency, and asymptotic normality, b�20 will once again

be consistent, asymptotically normal, as well as e¢ cient among the class of
GMM estimators. And now Cn is linear when solving for b�20 :
3 Applications of GMM

3.1 Ordinary Least Squares

Since GMM does not impose any restrictions on the functional form of  ; it
can be easily applied to simple-linear as well as non-linear moment conditions.
(It can also be extended to continuous, but non-di¤erentiable functions). The
usefulness of GMM is perhaps more evident for non-linear estimations, but
one can become more familiar with GMM by drawing similarities with other
standard techniques.
For the case of OLS, we have:

yi = x0i� + "i

with the zero covariance condition:

E(xi"i) = 0

The latter is the key GMM moment condition, and can be rewritten as:

E( (xi; �)) = 0

E(xi(yi � x0i�)) = 0

The sample analog becomes:

1

n

X
i

(xi(yi � x0ib�)) = 0
Since these are k equations with k unknowns, GMM is just-identi�ed with

the unique solution of:

b�GMM =

 X
i

xix
0
i

!�1 X
i

xiyi

!
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which corresponds to the OLS solution. For the variance covariance matrix
we need to compute only � and D :

� = E( (xi; �) (xi; �)
0)

= E(xi"i"ix
0
i)

= E("2ixix
0
i)b� =

1

n

X
i

e2ixix
0
i

where ei = yi � x0ib�:
D = E

�
@ (xi; �0)

@�0

�
= E (�xix0i)bD = � 1

n

X
i

xix
0
i

Then, the variance-covariance matrix will equal:

1

n
b� =

1

n
bD�1b� bD0�1

=
1

n

 
� 1
n

X
i

xix
0
i

!�1 
1

n

X
i

e2ixix
0
i

! 
� 1
n

X
i

xix
0
i

!�1

=

 X
i

xix
0
i

!�1 X
i

e2ixix
0
i

! X
i

xix
0
i

!�1
This is also known as the White formula for heteroskedasticity-consistent

standard errors.
For a simpler OLS example, if we assume homoskedasticity, one can also

obtain a simpler version of the variance matrix. With homoskedasticity,

� = E("2ixix
0
i)

= E(E("2i j xi)xix0i)
= E

�
E("2i )xix

0
i

�
= E("2i )E(xix

0
i)

b� =

 
1

n

X
i

e2i

! 
1

n

X
i

xix
0
i

!

Then,

1

n
b� =  1

n

X
i

e2i

! X
i

xix
0
i

!�1
which is the variance estimate for the homoskedastic case.
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3.2 Instrumental Variables

Suppose again
yi = x0i� + "i

But for the IV estimation, we have

E(wi"i) = 0

where wi is not necessarily equal to xi: We only require E(w0ixi) 6= 0 to be
able to invert matrices. The sample analog now becomes:

1

n

X
i

wi(yi � x0ib�) = 0
If wi and xi have the same dimension, then we�re again in the just-identi�ed

case, with the unique solution of:

b�GMM =

 X
i

wix
0
i

!�1 X
i

wiyi

!
= b�IV

If the number of instruments exceeds the number of right-hand side variables,
we�re in the over-identi�ed case. We can go ahead with 2-stage estimation, but
a particular choice of the weighting matrix deserves attention. If we set

An =
1

n

X
i

wiw
0
i

The FOC for GMM becomes:"
1

n

X
i

@ (xi; b�)
@�0

#0
A�1n

"
1

n

X
i

 (xi; b�)# = 0

 
1

n

X
i

wix
0
i

!0 
1

n

X
i

wiw
0
i

!�1 
1

n

X
i

wi(yi � x0ib�)
!

= 0

Let,

b� =  X
i

wiw
0
i

!�1 X
i

wix
0
i

!
(8)

b� is then the regression coe¢ cients of xi on wi:
Then we have:

b�0 X
i

wi(yi � x0ib�)
!

= 0 (9)X
i

b�0wi(yi � x0ib�) = 0
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Note that: b�0wi = �w0ib��0 = bxi
and X

i

bxix0i =X
i

bxibx0i
where bxi are the �tted values of xi from (8).
Equation (9) then becomes:X

i

bxi(yi � bx0ib�) = 0
This is the solution to 2 Stage Least Squares (2SLS). The �rst stage is the

regression of the right hand side variables on the instruments; and the second
stage is the regression of the dependent variable on the �tted values of the right-
hand side variables. Thus, with GMM we�re able to obtain the 2SLS estimates
and their correct standard errors. (The usual setting of 2SLS is to regress
only the "problematic" right-hand side variables on the instruments, and then
use their �tted values. The right-hand side variables, not correlated with the
error term, are part of the instruments, and so their �tted values are equal to
themselves. We�re then doing the exact same regressions).

3.3 Maximum Likelihood

Suppose now we know the family of distributions, p(�; �); where the xi come from
but do not know the true parameter value �0. Maximum Likelihood solution to
�nding �0 is: b�ML = argmax

�2�
p(x1; :::; xn j �)

= argmax
�2�

Y
p(xi j �)

The maximum point estimate is invariant to monotonic transformations, and
so: b�ML = argmax

�2�
log
�Y

p(xi j �)
�

= argmax
�2�

1

n

X
log p(xi j �)

The FOC becomes:
1

n

X @ log p(xi j b�)
@�0

= 0 (10)

If we let  (xi j �) = @ log p(xij�)
@�0 ; the score function, then equation (10) can

serve as the sample analog to a key moment condition of the form:

E

�
@ log p(xi j �)

@�0

�
= 0

When doing ML estimation, the above equation will usually hold. If in
doubt, you should consult the references.
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