
2.2 Filtrations

Let (Ω,F) be a measureable space. A filtration in discrete time is a sequence of

σ–algebras {Ft} such that

Ft ⊂ F

and

Ft ⊂ Ft+1

for all t = 0, 1, . . ..

In continuous time, the second condition is replaced by

Fs ⊂ Ft

for all s ≤ t.

3 Markov processes

The idea of a Markov process is to capture the idea of a short-memory stochastic

process: once its current state is known, past history is irrelevant from the point of

view of predicting its future.

Definition. Let (Ω,F) be a measurable space and let (P,F) be, respectively, a

probability measure on and a filtration of this space. Let X be a stochastic process

in discrete time on (Ω,F). Then X is called a (P,F)-Markov process if

1. X is F−adapted, and
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2. For each t ∈ Z+ and each Borel set B ⊂ B (R)

P (Xt+1 ∈ B|Ft) = P (Xt+1 ∈ B|σ (Xt)) . (9)

Sometimes when the probability measure and filtration are understood, we

will talk simply of a Markov process.

Remark. Often the filtration F is taken to be that generated by the process X

itself.

Proposition. Let (Ω,F , P,F) be a filtered probability space and let X be a (P,F)-

Markov process. Let t, k ∈ Z+. Let f : R→ R be a Borel function such that f (Xt+k)

is integrable. Then,

E [f (Xt+k) |Ft] = E [f (Xt+k) |σ (Xt)] (10)

and hence there is a Borel function g : Z+ × Z+ × R→ R such that, for each t,

E [f (Xt+k) |Ft] = g (t, k,Xt) . (11)

Proof. To show it for k = 1, use that f (Xt+1) is a σ (Xt+1)−measurable random

variable and hence is the limit of a monotone increasing sequence of σ (Xt+1)−simple

random variables. But such random variables are linear combinations of indicator

functions of sets X−1
t+1 (B) with B a Borel set. This completes the proof for k = 1.

To prove it for arbitrary positive k, use induction. To prove it for k + 1 assuming it

true for k, use the law of iterated expectations.

The vector case is a simple extension of the scalar case. However, it is important

that the definition of a vector Markov process is not that each component is Markov.
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Instead, we require that all the relevant (for the future of X) bits of information in

Ft are in the σ−algebra generated by all the stochastic variables in Xt, i.e. σ (Xt) is

defined as the single σ−algebra σ ({X1,t, X2,t, ..., Xn,t}). This means that, for each

Borel function f : Rn → Rm,

E [f (Xt+k) |Ft] = E [f (Xt+k) |σ (Xt)] (12)

and hence that there is a Borel function g : Z+ × Rn→ Rm such that, for each t,

E [f (Xt+1) |Ft] = g (t,Xt) . (13)

(The case k = 1 is so important that we stress it here by ignoring greater values of

k.)

3.0.1 Probability transition functions and time homogeneity

Definition. Let (Ω,F , P,F) be a filtered probability space and let X be a (P,F)-

Markov process. Then, for each t = 0, 1, 2... its probability transition function

Qt : R×B (R) → [0, 1] is defined via

Qt (x,B) = P (Xt ∈ B|Xt−1 = x) . (14)

Note that any Markov process has a sequence of probability transition functions.

Note also that for each fixed t and x, Qt+1 (x, ·) is a probability measure on B (R) .

Meanwhile, if we fix B, Qt+1 (Xt (·) , B) is a random variable. Indeed, it is the con-

ditional probability of Xt+1 ∈ B given Xt, i.e. Qt+1 (Xt, B) = E
[
IX−1

t+1(B)

∣∣∣σ (Xt)
]
.

Moreover, the conditional expectation of any σ (Xt+1)-measurable random variable

(given Xt) is an integral with respect to the measure Qt+1 in the following sense.
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Proposition. Let (Ω,F , P,F) be a filtered probability space and let X be a

(P,F)-Markov process. Let 〈Qt〉 be its probability transition functions and let

Z ∈ L1 (Ω, σ (Xt+1) , P ). Then, for each t = 0, 1, ...

E [Z|Xt] =

∫

R
f (y) Qt+1 (Xt, dy) (15)

or, put differently, we have for each t = 0, 1, ... and each x,

E [Z|Xt = x] =

∫

R
f (y) Qt+1 (x, dy) . (16)

Proof.

We will show it first for an indicator variable Z = IX−1
t+1(A) where A ∈ B (R) . Then

f (y) = IA (y) . We now need to show that the random variable

∫

R
f (y) Qt+1 (Xt, dy)

qualifies as the conditional expectation E [Z|Xt] . Clearly it is σ (Xt)−measurable.

But does it integrate to the right thing? Well, let G ∈ σ (Xt) and recall that, by

definition, Qt+1 (Xt, A) = E
(
IX−1

t+1(A)|σ (Xt)
)

. Hence

∫

G

∫

R
f (y) Qt+1 (Xt, dy) P (dω) =

∫

G

∫

R
IA (y) Qt+1 (Xt, dy) P (dω) =

=

∫

G

Qt+1 (Xt, A) P (dω) =

∫

G

E
(
IX−1

t+1(A)|σ (Xt)
)

P (dω) =

∫

G

IX−1
t+1(A)P (dω) .

(17)

Meanwhile, since Z = IX−1
t+1(A) we obviously have

∫

G

ZP (dω) =

∫

G

IX−1
t+1(A)P (dω) . (18)
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To show the theorem for an arbitrary Z ∈ L1 (Ω, σ (Xt+1) , P ) , use the Monotone

Convergence Theorem.

We now use the probability transition function to define a time homogeneous Markov

process.

Definition. Let (Ω,F , P,F) be a filtered probability space and let X be a (P,F)-

Markov process. Let 〈Qt〉∞t=1 be its probability transition functions. If there is a Q

such that Qt = Q for all t = 1, 2, ... then X is called a time homogeneous Markov

process.

Proposition. Let (Ω,F , P,F) be a filtered probability space and let X be a time

homogeneous (P,F)-Markov process. For any nonnegative integers k, t, let Yt+k ∈
L1 (Ω, σ (Xt+k) , P ). Then for each k = 0, 1, ... there is a Borel function gk : R→ R

such that, for each t = 0, 1, ...

E [Yt+k|Ft] = gk (Xt) . (19)

In particular, there is a Borel function h such that, for each t = 0, 1, ...

E [Yt+1|Ft] = h (Xt) . (20)

3.1 Finite–state Markov chains in discrete time

This is perhaps the simplest class of Markov processes. Let (Ω,F , P ) be a probability

space and let X = {x1, x2, . . . , xn} be a finite set. X : Z+ → X be a stochastic

process. Denote by µt the vector of probabilities that Xt = xi and suppose there is
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a sequence of matrices Γt such that

µt+1 = Γtµt. (21)

Then X is said to be a finite–state Markov chain in discrete time. Call Γt the

probability transition matrix.

The interpretation of (21) is the following.

P (Xt+1 = xi|Xt = xj) = Γt(i, j).

If Γt = Γ we call the process and time–homogenenous or stationary.

If Γ is sufficiently well–behaved, then X has a unique stationary distribution.

Definition. Let X be a stationary finite–state Markov chain and let T be the time

of the first visit to state j after t = 0. Then state j is called recurrent (opposite:

transient) if

P ({T < ∞}|X0 = xj) = 1.

Definition. The j is called periodic with period δ > 1 if δ is the largest integer

for which

P ({T = nδ for some n ≥ 1}|X0 = j) = 1.

If there is no such δ > 1, then j is called aperiodic.

Definition. A Markov chain is said to be aperiodic if all its states are aperiodic.

Definition. A state j can be reached from i if there exists an integer n ≥ 0 such

that

Γn(i, j) > 0.
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where by Γn(i, j) we mean the (i, j) element of the matrix Γn.

Definition. A set of states is said to be closed if no state outside it can be reached

from any state in it.

Definition. A set of states is said to be ergodic if it is closed and no proper subset

is closed.

Definition. A Markov chain is called irreducible if its only closed set is the set of

all states.

Theorem. Let X be a finite state stationary Markov chain with transition matrix

Γ and suppose X irreducible and aperiodic. Then





µ = Γµ

µ · 1 = 1

has a unique solution µ∗ and this µ∗ has the property that

lim
t→∞

Γtµ0 = µ∗

for all µ0 such that µ · 1 = 1.

Proof. See Cinlar (1975).

3.2 Finite–state Markov chains in continuous time

Let (Ω,F , P ) be a probability space and let X = {x1, x2, . . . , xn} be a finite set.

Let X : R+ → X be a stochastic process. Denote by µ(t) the vector of probabilities
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that X(t) = xi and suppose there is a matrix-valued function Γ(t) such that µ(t)

satisfies

µ̇(t) = Γ(t)µ(t).

Then we call X a finite-state continuous time Markov chain and If Γ(t) = Γ we call

the process and time–homogenenous or stationary.

3.3 Poisson processes

3.3.1 The Poisson distribution

Intuitively, the Poisson distribution comes from taking the limit of a sum of Bernoulli

random variables.

Definition. A random variable X is said to be Bernoulli if there is a real number

0 ≤ p ≤ 1 such that

P ({X = 1}) = p

and

P ({X = 0}) = 1− p.

Definition. A random variable Y is said to be binomial distribution if there is an

integer n and a real number 0 ≤ p ≤ 1 such that

P ({Y = k}) =
n∑

k=0

(
n

k

)
pk(1− p)n−k

where the binomial coefficient is defined as follows.
(

n

k

)
=

n!

k!(n− k)!
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Proposition. If {Xi, i = 1, . . . , n} is a collection of independent Bernoulli random

variables, then Y defined via

Y =
n∑

i=1

Xi

is binomially distributed.

Proposition. Let X be binomial with parameters n, p. Then

E[X] = np.

Proof. Exercise.

Now imagine that we are on a fishing expedition. For some reason we dip the fishing

pole into the water 10 times for one minute at a time. The probability of catching

a fish during any one dipping is p, independently of whether I caught a fish in any

previous dipping. Then the total number of fish caught is a binomial variable.

But what if I dip 20 times for half a minute, or 40 times for 15 seconds etc. Assume

that the probability of catching a fish during a half–minute dip is p/2 and similarly

for shorter dips. What happens in the limit? As we take limits, let the expected

total number of fish caught λ = np be constant and let n → ∞. (It follows that

p → 0.) Then it turns out that the distribution of the total number of fish caught

tends to the Poisson distribution with parameter λ.

Definition. A random variable X is said to be Poisson distributed if there is a

real number λ ≥ 0 such that

P ({X = k}) = e−λ λk

k!
.

Proposition Suppose two independent random variables X and Y are Poisson
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distributed with parameters λ and µ, respectively. Then Z = X + Y is Poisson

distributed with parameter λ + µ. Proof. Use the characteristic function.

Definition. A continuous time stochastic process is a function X(t) where for each

fixed t ≥ 0, X(t) is a random variable.

Definition. Let (Ω,F , P,F) be a filtered probability space. A stochastic process

{N(t, ω); t ≥ 0} is said to be a (P,F)–Poisson process with intensity λ if

• N is F–adapted.

• The trajectories of N are (with probability one) right continuous and piecewise

continuous.

• N(0) = 0.

• ∆N(t) = 0 or 1 (with probability one) where

∆N(t) = N(t)−N(t−).

• For all s ≤ t, N(t)−N(s) is independent of Fs.

• N(t)−N(s) is Poisson distributed with parameter λ(t− s), that is

P (N(t)−N(s) = k | Fs)) = P (N(t)−N(s) = k) = e−λ(t−s)λ
k(t− s)k

k!
.

Proposition. The time between jumps is is exponentially distributed. More pre-

cisely, let τ be defined via

τ = inf
t≥0
{N(t) > 0}.
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Then

P ({τ < t}) = F (t) = 1− e−λt

and the corresponding probability density function is

f(t) = F ′(t) = λe−λt.

Proof. Exercise.

21



References

Chung, K. L. (2001). A Course in Probability Theory, Third Edition. Academic
Press.

Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice–Hall.

Williams, D. (1991). Probability with Martingales. Cambridge University Press.

22




