2.2 Filtrations

Let (€2, F) be a measureable space. A filtration in discrete time is a sequence of
o—algebras {F;} such that
Fi CF

and

Fi C Fin

forallt=0,1,....

In continuous time, the second condition is replaced by
Fs CF

for all s <.

3 Markov processes

The idea of a Markov process is to capture the idea of a short-memory stochastic
process: once its current state is known, past history is irrelevant from the point of

view of predicting its future.

Definition. Let (2, F) be a measurable space and let (P, F) be, respectively, a
probability measure on and a filtration of this space. Let X be a stochastic process

in discrete time on (€2, F). Then X is called a (P, F)-Markov process if

1. X is F—adapted, and
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2. For each t € Z, and each Borel set B C B (R)
P (Xip1 € BIFi) = P(Xi41 € Blo (Xy)) . 9)

Sometimes when the probability measure and filtration are understood, we

will talk simply of a Markov process.

Remark. Often the filtration F is taken to be that generated by the process X

itself.

Proposition. Let (2, F, P, F) be a filtered probability space and let X be a (P, F)-
Markov process. Let ¢,k € Z,. Let f : R — R be a Borel function such that f (X;ix)

is integrable. Then,

Elf (Xew) B = Ef (Xigs) o (X)) (10)

and hence there is a Borel function g : Z, x Z, x R — R such that, for each ¢,

Elf (X)) | F] =gtk Xy). (11)

Proof. To show it for £ = 1, use that f(X;;1) is a 0 (X;41) —measurable random
variable and hence is the limit of a monotone increasing sequence of o (X, 1) —simple
random variables. But such random variables are linear combinations of indicator
functions of sets X;Lll (B) with B a Borel set. This completes the proof for k = 1.
To prove it for arbitrary positive k, use induction. To prove it for k£ + 1 assuming it

true for k, use the law of iterated expectations. W

The vector case is a simple extension of the scalar case. However, it is important

that the definition of a vector Markov process is not that each component is Markov.
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Instead, we require that all the relevant (for the future of X) bits of information in
F; are in the o—algebra generated by all the stochastic variables in X, i.e. o (X}) is
defined as the single o—algebra o ({X14, Xa¢, ..., Xpnt}). This means that, for each

Borel function f : R" — R™,

Ef (Xew) | 7] = Ef (Xeqr) lo (X)) (12)

and hence that there is a Borel function g : Z, x R"— R™ such that, for each ¢,
Ef (X)) [F] = g(t, Xy) - (13)

(The case k = 1 is so important that we stress it here by ignoring greater values of

k)

3.0.1 Probability transition functions and time homogeneity

Definition. Let (2, F, P, F) be a filtered probability space and let X be a (P, F)-
Markov process. Then, for each t = 0,1,2... its probability transition function

Qi : RxB(R) — [0, 1] is defined via
Qi (z,B)=P(X; € B|X;_1 =1). (14)

Note that any Markov process has a sequence of probability transition functions.
Note also that for each fixed ¢ and x, Q41 (z, ) is a probability measure on B (R).
Meanwhile, if we fix B, Q41 (X; (), B) is a random variable. Indeed, it is the con-
ditional probability of X,., € B given X;, i.e. Qu1 (X;, B) = E [Ixtlll(B)‘ o (Xt)].
Moreover, the conditional expectation of any o (X;1)-measurable random variable

(given X;) is an integral with respect to the measure ), in the following sense.
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Proposition. Let (Q,F, P, F) be a filtered probability space and let X be a
(P, F)-Markov process. Let (Q;) be its probability transition functions and let
Z € L (Q,0(Xi41),P). Then, for each t = 0,1, ...

EZ]|X] = /f(y) Qir1 (X1, dy) (15)

or, put differently, we have for each t = 0,1, ... and each =z,

E[Z|X, =] = / F(9) Qe (a, dy) (16)

Proof.

We will show it first for an indicator variable Z = I -1 (4 where A € B (R). Then
f(y) = 14 (y). We now need to show that the random variable /f (y) Qev1 (Xy, dy)
R

qualifies as the conditional expectation E [Z|X;]. Clearly it is o (X;) —measurable.
But does it integrate to the right thing? Well, let G € o (X;) and recall that, by
definition, Q11 (X¢, A) = F (IX;11(A)|O' (Xt)> . Hence

[ [ 1@ udy Paw) = [ [ 10) Qe (Xidy) P (a) =

t+1

— [ Qe () P o) = [ B (1pnlo (60) P o) = [ Los P (a).

G a
(17)
Meanwhile, since Z = I X,k a) We obviously have

G G
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To show the theorem for an arbitrary Z € L' (Q,0 (X;41), P), use the Monotone

Convergence Theorem. W

We now use the probability transition function to define a time homogeneous Markov

process.

Definition. Let (2, F, P, F) be a filtered probability space and let X be a (P, F)-
Markov process. Let (Q;),~, be its probability transition functions. If there is a Q)
such that Q; = @ for all t = 1,2, ... then X is called a time homogeneous Markov

process.

Proposition. Let (2, F, P, F) be a filtered probability space and let X be a time
homogeneous (P, F)-Markov process. For any nonnegative integers k, ¢, let Y, ) €
LY (Q,0(X44x), P). Then for each k= 0,1, ... there is a Borel function g : R — R

such that, for each t = 0,1, ...
EYik|F] = gi (X0) - (19)
In particular, there is a Borel function h such that, for each t = 0,1, ...

E [Y;f+1’ft] =h (Xt) . (20)

3.1 Finite—state Markov chains in discrete time

This is perhaps the simplest class of Markov processes. Let (€2, F, P) be a probability
space and let X = {xy,29,...,2,} be a finite set. X : Z, — X be a stochastic

process. Denote by p, the vector of probabilities that X; = x; and suppose there is
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a sequence of matrices I'; such that

Propr = ety (21)

Then X is said to be a finite-state Markov chain in discrete time. Call I'; the

probability transition matrix.
The interpretation of (21) is the following.

P(Xiy1 = x| Xy = ;) =T4(4,5).

If I'; = I" we call the process and time—homogenenous or stationary.
If T is sufficiently well-behaved, then X has a unique stationary distribution.

Definition. Let X be a stationary finite—state Markov chain and let 7" be the time
of the first visit to state j after ¢ = 0. Then state j is called recurrent (opposite:
transient) if

Definition. The j is called periodic with period § > 1 if § is the largest integer
for which
P({T = nd for some n > 1}/ X, =j) = 1.

If there is no such § > 1, then j is called aperiodic.
Definition. A Markov chain is said to be aperiodic if all its states are aperiodic.

Definition. A state j can be reached from i if there exists an integer n > 0 such
that
(i, 7) > 0.
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where by I'"(7, j) we mean the (i, j) element of the matrix I'™.

Definition. A set of states is said to be closed if no state outside it can be reached

from any state in it.

Definition. A set of states is said to be ergodic if it is closed and no proper subset

is closed.

Definition. A Markov chain is called irreducible if its only closed set is the set of

all states.

Theorem. Let X be a finite state stationary Markov chain with transition matrix

I' and suppose X irreducible and aperiodic. Then
p="Tp
p-1=1
has a unique solution p* and this p* has the property that

*

lim My = p
t—o00
for all p, such that p-1 = 1.

Proof. See Cinlar (1975). ®

3.2 Finite—state Markov chains in continuous time

Let (2, F, P) be a probability space and let X = {xq,29,...,2,} be a finite set.

Let X : Ry — X be a stochastic process. Denote by p(t) the vector of probabilities
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that X (t) = z; and suppose there is a matrix-valued function I'(t) such that pu(t)

satisfies

Then we call X a finite-state continuous time Markov chain and If I'(¢) = I we call

the process and time—homogenenous or stationary.

3.3 Poisson processes
3.3.1 The Poisson distribution

Intuitively, the Poisson distribution comes from taking the limit of a sum of Bernoulli

random variables.

Definition. A random variable X is said to be Bernoulli if there is a real number

0 < p <1 such that
P{X=1})=p
and

PH{X=0})=1-p.

Definition. A random variable Y is said to be binomial distribution if there is an

integer n and a real number 0 < p < 1 such that

n

PUY =i =Y (1)

k=0

where the binomial coefficient is defined as follows.

(V)
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Proposition. If {X;, i =1,...,n} is a collection of independent Bernoulli random
variables, then Y defined via
Y =) X
i=1

is binomially distributed.

Proposition. Let X be binomial with parameters n, p. Then
E[X] = np.

Proof. Exercise. B

Now imagine that we are on a fishing expedition. For some reason we dip the fishing
pole into the water 10 times for one minute at a time. The probability of catching
a fish during any one dipping is p, independently of whether I caught a fish in any

previous dipping. Then the total number of fish caught is a binomial variable.

But what if I dip 20 times for half a minute, or 40 times for 15 seconds etc. Assume
that the probability of catching a fish during a half-minute dip is p/2 and similarly
for shorter dips. What happens in the limit? As we take limits, let the expected
total number of fish caught A = np be constant and let n — oo. (It follows that
p — 0.) Then it turns out that the distribution of the total number of fish caught

tends to the Poisson distribution with parameter A.

Definition. A random variable X is said to be Poisson distributed if there is a
real number A > 0 such that

k
P{X =k)) = e’\%.

Proposition Suppose two independent random variables X and Y are Poisson
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distributed with parameters A\ and p, respectively. Then Z = X + Y is Poisson

distributed with parameter A + p. Proof. Use the characteristic function.

Definition. A continuous time stochastic process is a function X (¢) where for each

fixed t > 0, X(t) is a random variable.

Definition. Let (Q,F, P, F) be a filtered probability space. A stochastic process

{N(t,w);t > 0} is said to be a (P, F)-Poisson process with intensity A if

e N is F—adapted.

The trajectories of N are (with probability one) right continuous and piecewise

continuous.

e N(0)=0.

AN(t) =0 or 1 (with probability one) where

For all s <t, N(t) — N(s) is independent of Fj.
e N(t) — N(s) is Poisson distributed with parameter A(t — s), that is

P(N(t) — N(s) = k| 7)) = P(N(t) = N(s) = k) = ¢

Proposition. The time between jumps is is exponentially distributed. More pre-
cisely, let 7 be defined via

T = %QE{N(” > 0}.
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Then
P({T<t}>:F(t):1_e—>\t

and the corresponding probability density function is
f(t) = F'(t) = Xe ™.

Proof. Exercise. ®
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