Data Structures and Algorithm
. 4949444

Xiaoqing Zheng
zhengxg@fudan.edu.cn

['

JEIHIAIFTT B 1) S
1 | | : L M|
id i : I L=t
JEHIE | !‘h i ||§ \

T

Trees (max heap)

1 PARENT (1)
return |i/2 |

LEFT(i)
return 2i

RIGHT(i)

I e T 1 1
rewuril 21 — 1

16 | 14 10\8!7 9 3\2%4‘1\

Binary trees

root[T] —

/AN N
/171 (717 K‘// /17

/17 Not array!

I Binary Search Tree

 Each node x has:

— key[X]
— Pointers:

lllllllll

° llglle
* px]

Binary Search Tree

* Property: for any node X: e
— For all nodes V 1n the left

subtree of X:
key[y] < key[x] a @
— For all nodes y in the right
subtree of X; G °
key[y] > key[x]

* Given a set of keys, 1s BST
for those keys unique? G

I No uniqueness

What can we do given BST ?

Sort !

INORDER-TREE-WALK(x)

1. 1f x # NIL

2. then INORDER-TREE-WALK(left[x])
3. print key[X]

4. INORDER-TREE-WALK (right[x])

A preorder tree walk prints the root before the
values in either subtree, and a postorder tree walk
prints the root after the values in 1ts subtrees.

Sort ?

Sort ?

Sort ?

Sort ?

Sort ?

Sort ?

Sort ?

Analysis of inorder-walk

Theorem. If x is the root of an n-node subtree, then the
call INORDER-TREE-WALK(X) takes ®(n) times.

Substitution method
T(n)=(c+d)n+c
Base case:n=0, T(0)=(c+d)-0+c=c
Forn >0,
TN =Tk)+T(n—-k—-1)+d
=((c+tdk+c)+(c+d)-(n—-k—-1)+c)+d

=(c+dn+c—(c+d)+c+d
=(c+d)n+c

Sorting

Does it mean that we can sort n keys in O(n) time?

No.
It just means that building a binary
search tree takes Q(nlgn) time

(in the comparison model)

I BST as a data structure

. Operati(ogls: @
— Insert(x
— Delete(x) a @
— Search(k) G °

Search

TREE-SEARCH(x, k)

1. 1f x = NIL or k = key[X]

2. then return x

3. 1f k <key[x]

4. then return TREE-SEARCH(left[x], k)
5. else return TREE-SEARCH(right[x], k)

Search

ITERATIVE-TREE-SEARCH(X, k)
1. while x # NIL and k # key[X]
2. doif k <key[x]

3. then x « left[x]
4, else x <« right[x]
5. return x

On most computers, this version is more efficient.

Minimum and maximum

TREE-MINIMUM(X)
1. while left[x] # NIL
2. dox « left[x]

3. return x

TREE-MAXIMUM(x) G
1. while right[x] # NIL
2. dox <« right[x]

3. return x

I Successor and predecessor

Which is the node
15's successor

I Successor and predecessor

~—————_Which is the node
13's successor

Successor and predecessor

TREE-SUCCESSOR(x)

1. 1f right[x] # NIL

2. then return TREE-MINIMUN(right[x])
3.y < plx]

4. while y # NIL and x = right[y]

5. dox<«y
6. y < pIX]
7. returny

Running time
O(h)

Constructing BST

TREE-INSERT(T.z) Running time e
1.y« NIL O(h)

2. X «— root[T]
3. while x # NIL a @

4. doy <« X

5. If key[z] < key[X] 0 °

6. then x « left[x]

7. else x « right[x]

8.pi7] @ @

9.if y = NIL
10. then root[T] «— z e
11. else if key[z] < key[y]

12. then left[x] « z
13. else right[x] « z TREE-INSERT(T, 2)

Analysis

* After we 1nsert N elements,

what 1s the worst possible
BST height?

* Pretty bad: n — 1

* Average: O(nlgn)

I Deletion (case 1)

I Deletion (case 2)

I Deletion (case 3)

z has two children.

Deletion

TREE-DELETE(T, z)

1. if left[z] = NIL or right[z] = NIL Running time:
2. theny«z O(h)
3. else y < TREE-SUCCESSOR(7)
4. 1f left[y] # NIL
5. then x « left[y] _
6. else x < right[y] 9. 1f ply] = NIL
7. if x £ NIL 10. then root[T] «— x
8. then p[x] < p[y] I1. else ify = left[p[y]]
. 12. then left[p[y]] < x
Note: z's successor 13. else right[p[y]] < x
just has one child or 14. ify #7
z has one child. 15. then key[z] < key[y]

16. returny

Balanced search trees

Balanced search trees, -
or how to avoid this
even 1n the worst case

AV L (Adelson-Veskil and Landis)
tree 1s 1dentical to a binary search
tree, except that for every node in the
tree, the height of the left and right
subtrees can differ by at most 1.

I AVI. trees

Which one Is AVL tree?

AVI. trees

A violation might occur in four case when we insert
new node to the AVL tree.

Case 1: an insertion into the left subtree of the

left child of R.

Case2 : an insertion 1nto the right subtree of the
left child of R.

Case 3: an insertion into the left subtree of the
right child of R.

Case 4: an insertion 1nto the right subtree of the
right child of R.

Single rotation

() = [~

O
A o

Right rotation to fix case 1

I Single rotation

O
o\ (8 (A,
/B\ /o

4

|eft rotation to fix case 4

Double rotation

O
O
AN O

b /4

Single rotation fails to fix case 2

I Double rotation (first step)

Left rotation

I Double rotation (second step)

Right rotation

I Double rotation

Left-right double rotation to fix case 2

I Double rotation

Right-left double rotation to fix case 3

AVL tree rotation

Four types

Rotation

Case 1: Left-left

Right rotation

Case 4: Right-right

Left rotation

Case 2: Left-right

Left-right double rotation

Case 3: Right-left

Right-left double rotation

I AVL tree example

® ><§@

Insert 2

I AVL tree example (cont.)

Insert 1 Right rotation

I AVL tree example (cont.)

Insert 4 and 5 Left rotation

AVL tree example (cont.)

O — (4
OO () (&
» & O © ©
(&)

Insert 6 Left rotation

I AVL tree example (cont.)

Insert 7 Left rotation

I AVL tree example (cont.)

Insert 16 and 15 Right-left rotation

AVL tree example (cont.)
I (D = (&
OO (2) (1
O OO G O ®E G
(D OROIO

Insert 14 Right-left rotation

Lo =
(2) (7, OO
OROIONOENONMOION®:

Insert 13 Left rotation

I AVL tree example (cont.)

I AVL tree example (cont.)

Insert 12 Right rotation

I AVL tree example (cont.)

Insert 11 Right rotation

I AVL tree example (cont.)

Insert 10 Right rotation

I AVL tree example (cont.)

. =
([(A B
(2) QW () () ©O@ (s

00000000000 000

Insert 8 and 9 Left-right rotation

Red-black trees

BSTs with an extra one-bit color field in each node.

Red-black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (NIL) 1s black.

4. If a node is red, then both its children are black.

5. All simple paths from any node X to a descendant
leaf have the same number of black nodes.

Example of a red-black tree

7

NIL g NIL

11 26

NIL § NIL § NIL g NIL NIL g NIL

I Example of a red-black tree

nil[T]

I Height of a red-black tree

I Height of a red-black tree

I Height of a red-black tree

I Height of a red-black tree

I Height of a red-black tree

o oo

Lemma of red-black tree

We call the number of black nodes on any path from,
but not including, a node X down to a leaf the black-
height of the node, denoted bh(x).

Lemma.

A red-black tree with n internal nodes has height at
most 2lg(n + 1)

Dynamic-set operations search, minimum, maximum,
successor, and predecessor can be implemented in
O(lgn) time on red-black trees.

Proot

Subtree rooted at any node X contains at least 2210 —]
internal nodes.

* Base case:

Height of x 1s 0, then X must be a leaf (nil[T]), subtree
rooted at X contains at least

2bh(x) — 1 =20 _1 = 0 internal nodes.

* Inductive:
Height of a child of X 1s less than the height of X itself,
subtree rooted at X contains at least
(20000 =1 1) + (2009 =1 1) 4 [=250 — 1 internal
nodes.

Proot (cont.)

According to property 4, at least the nodes on any
simple path from the root to a leaf, not including the
root, must be black.

Consequently, the black-height of the root must be at
least h/2; thus,

n=2M2-1_1 —=

h< 2lg(n+1).

Left rotation

LEFT-ROTATE(T, x)
1.y « right[x]
2. right[x] « left[y]
. p[left[y]] « X
. pLy] <= pIX]
Af p[x] =nil[T]
then root[T] <
else If x = left[p[x]]

then left[p[x]] <V
. else right[p[x]] <V
10. left[y] < x

1. p[x] —Y

O 00 N AW

RB-Insertion

RB-INSERT(T, z)

1.y« nil[T]

2. X «— root[T]

3. while x #nil[T]

4. doy«x 9. 1f y=nil[T]

5 if key[z] < key[X] 10. then root[T] <z

6. then x «— left[x] 11. else if key[z] < key[y]
7. else x « right[x] 12 then left[y] < z

8. p[z] —y 13. else right[y] <« z

14. left[z] < nil[T]

15. right[z] < nil[T]

16. color[z] < RED

17. RB-INSERT-FIXUP(T, 2)

RB-Insertion

Which of the red-black properties can be
violated upon the call to RB-INSERT-FIXUP?

RB-Insertion (case 1)

Change color

Case 1: z'suncle y is red

RB-Insertion (case 2)

Left rotation

Case 2: z's uncle y is black and z is a right child.
Convert case 2 to 3.

RB-Insertion (case 3)

Right rotation

Case 3: z's uncle y is black and z is a left child

RB-tree insertion

Types

Operation

Case 1L: z's uncle is red.

Change color.

Case 2L: z's uncle is black

2's father is . : Left rotation, p(z).
left child ?:nd z;s right chllld. o
ase 3L: z's uncle is blac : :
and 7 is left child. Right rotation, p(p(2))
Case 1R: z's uncle is red. Change color.
2's father is Case ?R: £ “T‘C'e 's black Right rotation, p(z).
: ... |and z is left child.
right child

Case 3R: z's uncle is black
and z is right child.

Left rotation, p(p(2)).

RB-Insertion

RB-INSERT-FIXUP(T, 2)
1. while color[p[z]] = RED

2. doifp[z] = left[p[p[z]]]

theny < right[p[p[z]]]
If color[y]=RED

then color[p[z]] « BLACK
color[y] « BLACK
color[p[p[z]]] «+— RED

z — plp[z]]

XN AW

Case 1
Case 1
Case 1
Case 1

RB-Insertion

0. else if z = right[p[z]]

10. then z < p[z]

11. LEFT-ROTATION(T, 2)

12. color[p[z]] < BLACK

13. color[p[p[z]]] < RED

14. RIGHT-ROTATION(T, p[p[z]])
15. else (same as then clause

with "right" and "left" exchanged)
16. color[root[T]] « BLACK

Running time:
O(lgn)

Case 2
Case 2
Case 3
Case 3
Case 3

RB-Example

INSERT 10,2, 12,4,6,8,1,9,7,3, 11,5

Change color
O: — ©

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3, 11,5
No change

| >

Node z’s father
IS black, so stop.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3, 11,5
No change

| >

Node z’s father
IS black, so stop.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3, 11,5
Change color

| >

Case 1L: z'suncle y is red and we get new z.

RB-Example (cont.) [Node is
root, so stop.
INSERT 10,2, 12,4,6,8,1,9,7,3, 11, 5 %

Change color

| >

V4 V4

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3,11,5
Left rotation

>

Case 3R: z's uncle y iIs black and z is a right child.

RB-Example (cont.) | Node 2's father

|

IS black, so stop.
INSERT 10,2,12,4,6,8,1,9,7,3, 11,5 %

Change color

Case 1R: z's uncle y Is red and we get new z.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3, 11,5
No change

IS black, so stop.

Node z’s father]

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3, 11,5
Left rotation

Case 3R: z's uncle y iIs black and z is a right child.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3,11,5
Change color

Case 1L: z'suncle y is red and we get new z.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3, 11,5
Left rotation

Case 2L: z's uncle y 1s black and z is a right child.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3,11,5

Right rotation
| >

Case 3L: z's uncle y is black and z is a left child.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3,11,5
No change

Node z’s father
IS black, so stop.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3,11,5
No change

Node z’s father
IS black, so stop.

RB-Example (cont.)

INSERT 10,2,12,4,6,8,1,9,7,3,11,5
No change

5 7

Z
Node z’s father
IS black, so stop.

RB-Deletion

RB-DELETE(T, 2)
1. if left[z] = nil[T] or right[z] = nil[T]

2. theny«z

3. else y < TREE-SUCCESSOR(z)

4. if left[y] £ nil[T]

5. then x « left]y]

6. else x < rightly] ~ 10. elseify = Ileft[p[y]]

7. p[x] < p[V] 11. then left[p[y]] < x
8. if p[y] = nil[T] 12. else right[p[y]] « X
9.

then root[T] «—x 13.1fy#z
14. then key[z] < key[y]

15. if color[y] = BLACK
16. then RB-DELETE-FIXUP(T, x)
17. returny

RB-Deletion

Which of the red-black properties can be
violated upon the call to RB-DELETE-FIXUP?

RB-Deletion (case 1)

Case 1: x's sibling w is red.
Convertcase 1to 2, 3, or 4.

RB-Deletion (case 2)

Case 2: x's sibling w is black, and
both of w's children are black.
Get the new node x.

RB-Deletion (case 3)

Case 3: x's sibling w Is black, and w's left
children is red, and w's right child is black.
Convert case 3 to 4.

RB-Deletion (case 4)

Case 4: x's sibling w 1s black, and w's right
child is red.
Terminate the while loop.

RB-tree deletion

Types

Operation

Case 1L: x's sibling w is red.

Left rotation, p(x).

Case 2L: x's sibling w is black and both of w's
children are black.

Change color.

Z1s left
- Case 3L: x's sibling w is black, and w's left : :
child !
children is red, and w's right child is black, | *'9Nt rotation, w.
Case 4L: x's sibling w is black, and w's right :
child is red. Left rotation, p(x).
Case 1R: x's sibling w is red. Right rotation, p(x).
Case 2R: x's sibling w is black and both of w's
: Change color.
o children are black.
215 right Case 3R: x's sibli Is black, and w's right
child ase 3R: x's sibling w is black, and w's rig L eft rotation, w.

children is red, and w's left child is black.

Case 4R: x's sibling w is black, and w's left
child is red.

Right rotation, p(x).

RB-DELETE

RB-DELETE-FIXUP(T, 2)
1. while x # root[T] and color[x] = BLACK
2. doifx=left[p[x]]

3. then w < right[p[x]]

4. If color[w] =RED

5. then color[w] < BLACK Case 1
6. color[p[x]] «— RED Case 1
7. LEFT-ROTATION(T, p[x]) Case 1
8. W <« right[p[z]] Case 1
9. If color[leftfw]] = BLACK and color[right[w]] = BLACK
10. then color[w] < RED Case 2
11. X «— P[X] Case 2

RB-Deletion

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,

else if color[right[w]] = BLACK
then color[leftfw]] «— BLACK
color[w] «<— RED
RIGHT-ROTATION(T, w)
W« right[p[x]]

color
color
color

W] «— color[p[x]]
p[X]] « BLACK

'right[w]] « BLACK

LEFT-ROTATION(T, p[x])
X «<— root[T]
else (same as then clause

with "right" and "left" exchanged)
23. color[x] «— BLACK

Case 3
Case 3
Case 3
Case 3

Case 4
Cacno /

wAJDLV 7T

Case 4
Case 4
Case 4

Analysis of RB-Deletion

What is the running time of RB-DELETE?

Running time:
O(lgn)

RB-Example

Delete 3

Delete

Node z Is red.

RB-Example

Delete 2

Delete

RB-Example

Delete 2

AN

Node x IS red.]

RB-Example

Delete 9

RB-Example

Delete 9

Right rotation
| >

Case 3L: x's sibling w 1s black, and w's left child
Is red and w's right child is black.

RB-Example

Delete 9

Case 4L: x's sibling w 1s black, and w's right child
IS red.

RB-Example

Delete 4

Which Is 4's successor?

RB-Example

Delete 4

Delete

m IS red.

RB-Example

Delete 10

Delete

RB-Example

Delete 10

Change color

Case 2L: x's sibling w Is black, and both of w's
children are black. Then, we get new x.

RB-Example

Delete 10
Change color

| >

X

)\

Node x IS red.

I RB-Example

Delete 11
Delete

>

VA

RB-Example

Delete 11
Change color

| >

X

AN

Node x IS red.

RB-Example

Delete &

Exchange

| >

Which 1s 8's successor?

I RB-Example

Delete &

Delete

VA

>

RB-Example

Delete &

Right rotation
| >

X

Case 1R: x's sibling w is red.

RB-Example

Delete &
Left rotation

| >

Case 3R: x's sibling w is black, and w's right
child is red and w's left child is black.

RB-Example

Delete &

Right rotation
| >

Case 4R: x's sibling w is black, and w's left child
IS red.

Typical disk drive

Platier

7

il

(e

=

B-tree

root[T] N
L|P

‘»/C}G\&x /T X |s

Al|B DI |E||F JI KL N||O QlIRI|S Ul |V

N

The minimum degree for this B-tree is t = 2,
every node other than the root must have at

least 1 keys and every node can contain at
most 3 keys (2-3-4 tree)

B-tree (1000 keys)

root[T]
L1000
10001
10001 10001 10001
1000 1000 (.- 1000

Each internal node and leaf contains 1000 keys.

Definition of B-trees

A B-tree T haves the following properties:

1. Every node x has the following fields:
* N[x], the number of keys currently stored 1n node X;
* the n[x] keys themselves, stored 1n nondecreasing
order, so that key,[x] = key,[x] = ... = key,[X];
* |eaf[x], a boolean value that is TRUE if x 1s a leaf
and FALSE 1if X 1s an internal node.

2. Each internal node x also contains n[x] + | has the
pointers C,[X], C5[X], ..., Cypy4 1 [X] to 1ts children.
Leaf nodes have no children, so their c; fields are
undefined.

Definition of B-trees

3. The keys key;[x] separate ranges of keys stored in
each subtree: if K; is any key stored in the subtree
with root c;[X], then

Ky < key[X] = Kk, Skey,[X] = ... = key,,q[X] S Kypps1

4. All leaves have the same depth, which 1s the tree's
height h.

Definition of B-trees

5. There are lower and upper bounds on the number of
key a node can contain (t = 2, minimum degree)

* Every node other than the root must have at least
{ — 1 keys. Every internal node other than the root
thus has at least t children;

* Every node can contain at most 2t — 1 keys. An
internal node can have at most 2t children.

Theorem. If n = 1, then for any n-key B-tree T of height
h and minimum degree t = 2,

h < log,n.

Searching a B-tree

SEARCH K

root[T] N
| P

Searching a B-tree

SEARCH K

root[T] N
| P

Splitting (B-tree)

Try to INSERT T

R

(| X

N\

\

U

BN

Minimum degree t = 2

Splitting (B-tree)

Try to INSERT T

R[XIS | >]/R[U\X\
PTTQT] [TsT]u \Nz PQ/ sT1 [TV [TY]]z

Number of

keys = 3

Minimum degree t = 2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,
X, Y,D, Z E.

Minimum degree t = 2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,
X, Y,D, Z E.
F

Minimum degree t = 2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,
X, Y,

D, Z, E.

F

S

Minimum degree t = 2

Insertion (B-tree)

INSERTF, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,
X, Y,

D, Z, E.

F

Q

S

Minimum degree t = 2

Insertion (B-tree)

INSERTF, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,

X, Y,D,ZE.
T [FIIQITs ——> [Q\
' Splitting \
Hkeys = 3
= S

Case 1: current node Is root and has 3 keys.

Minimum degree t = 2

Insertion (B-tree)

INSERTF, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,

X, Y,D,Z E.
—\] Qly | > rQl
\ Insert K / \
F S F||K S
#keyl< 3

Case 2: current node has at most 2 keys and the appropriate

subtree has at most 2 keys.
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,

X, Y,D,Z E.
NG | > [Q)
/ \ Insert C / \

FI K S C||F|[K S
#keys < 3

Case 2: current node has at most 2 keys and the appropriate

subtree has at most 2 keys.
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,

X,Y,D,Z E.
7Q\ ———> [[F}IQ]
\ Splitting / \
C|[F||K S C K S
#keyl=3

Case 3: current node has at most 2 keys and the appropriate

subtree has 3 keys.
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,
/

X, Y,D,Z E.
FIRN > [IFTIeN
/ \ Insert L / \
\
C K S C K||L S
#keyj‘,<3

Case 4: the appropriate subtree has at most 2 keys (after

case 3).
Minimum degree t =2

Insertion (B-tree)

INSERT

—

, S, QK CLLLH, T,V W, M,R,N, P, A, B,
, Y, D, Z,E.
FIION > JIFQR

[N AN

X

=] X

C Kl|L S C Hf |K

|

#keys < 3

Case 2: current node has at most 2 keys and the appropriate

subtree has at most 2 keys.
Minimum degree t =2

Insertion (B-tree)

INSERTF, S, Q, K,.C,L,H, T,V, W, M, R, N, P, A, B,
X, Y,D,Z E.
PIFRQN. ! > [FIQR

[AN/

Cl| [[HIIK S Cl]| [[H|IK||L SIIT

|

#keys < 3

X

Case 2: current node has at most 2 keys and the appropriate

subtree has at most 2 keys.
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y,D,Z E.
T HFRRE | > TFIQR
/ \ Insert V / \
C HI[K||L SI|T C HI[K||L STV

|

#keys < 3

Case 2: current node has at most 2 keys and the appropriate

subtree has at most 2 keys.
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,

X, Y,D,Z E.
—\rF|/Q\ ——> AENE AR
/ \ Splitting / \
cll ({HHKEICHEISET]]V cll f{HETKEICTHEESEH] [V
#keyi=3

Case 3: current node has at most 2 keys and the appropriate

subtree has 3 keys.
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,

X, Y,D,Z E.
—\,FLQ\{\ | > HFIQNTL
/ \ Insert \W / \
C H| [K||L S V C H|[K||L S V]IW
#keyl<3

Case 4: the appropriate subtree has at most 2 keys (after

case 3).
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y,D,ZE.
#keys = 3 X , ,

——F|F}|Q[T |
/ Splittin
V

C H|KLILLS W

>
g

|

Q

|

\

Case 1: current node 1s root and

Increase
TF) bg\ height
Cl| LIHLIKILE[LIS \W
nas 3 keys.

Minimum degree t = 2

Insertion (B-tree)

INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,
X, Y,D, Z E.

Y
—\IQ

#keys < 3 /
™~ F

'I/\{\
K/L S VIIW

Minimum degree t = 2

Insertion (B-tree)

INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,
X, Y,D, Z E.

RNV
P ANYIN

Hl K] |ILL]]|S | W ClIEIHLTILL]LLS VIIW

Case 3: current node has at most 2 keys and the appropriate

subtree has 3 keys.
Minimum degree t = 2

Insertion (B-tree)

INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,
X, Y,D,Z E.
plQl | Qs

NN

#keys<7gll%|:K 1 l/7Kd 17
L\ /
S H S

C H L VIIW C LM

VIIW

Case 4: the appropriate subtree has at most 2 keys (after

case 3).
Minimum degree t =2

Insertion (B-tree)

INSERT F, S, Q, K, C,L,H, T, V, W, M, R, N, P, A, B,

X, Y,D,Z E.
e
STA R

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degreet=2

#keys > 1
—

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degreet=2

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degreet=2

TFJAGR —— > i@/

/ Delete Y /
—

ALHCHDLIEHTHIHHT FILLINELP RUSH HVIHHTIXLIY HZ ATHCHIDHIEHIHIHLTILHINE P RUSH LIV XL 1Z

#keys > 1

Case 1: key k=Y IsIn a leaf.

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

#keys > 1
—

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

—— >
»FMQ\ »FMQ\
Exchange X and W
/ D Delete X /
K U K TLIX
A ClID} IE H/ L INFIP RIS \ X|1Z A ClID} IE H LIIN}|P RIS V Z

|

#keys > 1
Case 2-a: key k=W is in a internal node and one of its
children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETE F other than W Minimum degree t =2
#keyp{—\ F QL —> /JOR

#keys = 1 / Merge
LK& TEIW r|B) F\i \ TV

ALTHCSHDHEHHHEH L HINHPHRHSH HVH HXLH z IANEIEIENIENERINIBIHIRIEIRINRINIE

Case 2-b: key k= F i1s In a internal node and the both of its
children that precedes or follows k only has 1 key.

Deletion (B-tree)

DELETE F other than W Minimum degree t =2

o — SR
Exchange F and E

Delete E

7IBIIFLIK THW BEK‘\ TEW

AL HASHRHENHEH HICHINHPHITIRH ST HIVEH LX< z AlllIc]|D EIHIBINIENIRIBIINIIEIEA

|

#keys > 1
Case 2-a: key k= F i1s In a Iinternal node and one of its
children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

™~
TEToR ——— > TETRR
Exchange Q and R
/#keys | Delete R /
K ™~ Tl K TEIX
A ClID} |E H LIINLIP RLIS V Z A ClID} |E H/ LIINLIP S \Y \Z

Which is Q's successor? Itis R.

Case 2-a: key k= Q Is In a internal node and one of its
children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

[\]
VS

Case 2-b: key k= X is In a internal node and the both of its
children that precedes or follows k only has 1 key.

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

—
Delete X

™

AHLHICHDHIEHHIHLT HILEHINEIP S VX

Z A C

#keys > 1

Currentnodeis {V, X, Z }

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

X
#keys = 1 [FURN I:> T

I 7| B /7AR\|T
AlEIRIENEIIENIE SININIE AlEIRIENEINIENIE s;;vlz

Case 3-b: key k = K Is not present in a internal node and
the appropriate subtree that must contain k has only 1 key
and the subtree's immediate siblings have only 1 key .

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

&L —— > 'EL

/ \ Exchange K ancy \
— Delete L

B /7R 1T\4 / B ’[fR 1T\

A/C Dl IE H L INT|P S%Z A ClID} IE H N{ P S%Z

#keys > 1
Case 2-a: key k= K is In a internal node and one of its
children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

T Npe ——> T

/ \ Borrow one key /
fkeys = 1 /" #keys > 1 from the sibling

75& \,LFRqT\¥ /B&js\ .R\|T\4¥

All1IC El|IH N} |P S Z All1IC El}IH NL|P S

Case 3-a: key k = B 1s not present in a internal node and the
appropriate subtree that must contain k has only 1 key and
one of the subtree's immediate siblings has at least 2 keys .

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

m —— > T
Exchange B and C
Delete C

—\LB{\ .R1T LICHFIN RNT

A/CDE\I‘i Np\sl%z A/ DE\I‘—I NP\S‘%Z

|

#keys > 1
Case 2-a: key k=B i1s In a Iinternal node and one of its
children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

T —— > T
Borrow one key
from the sibling

—\|,C F\ RINT /Q]Eq RNT

A/ Dl [E]}]]H NP\;%Z A D Fl|H NP\;%Z

e

#keys > 1 #keys= 1
Case 3-a: key k= H Is not present in a internal node and the
appropriate subtree that must contain k has only 1 key and
one of the subtree's immediate siblings has at least 2 keys .

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

m —— > T
Delete H

IRNT /
H NP\S‘%Z A

#keys > 1

Case 1: key k=H Is In a leaf.

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

Deletion (B-tree)

DELETEY, W, Q, X, K, B, H, P Minimum degreet=2

»IE —— > PR
Delete P
—~
IRNT / RNT
A D F NIE \s‘%z A N s%z
#keys > 1

Case 1: key k=P i1sIn a leaf.

B-tree

Thinking and practice.

e Write code for B-T
e Write code for B-T
e Write code for B-T
e Write code for B-T

How about B+ tree?

REE-SEARCH(X, k)
REE-SPLIT-CHILD(X, 1, Y)
REE-INSERT(T, k)

REE-DELETE(T, k)

Any question?

Xiaoqing Zheng
Fundan University

