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T h )Trees (max heap)
PARENT(i)1

16

PARENT(i)
return / 2i⎢ ⎥⎣ ⎦
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2 3

14 10
LEFT(i)

return 2i
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Binary trees
root[T]

/
root[T]

/

/ /

/ // / / / // // /

/ / Not array!



S h TBinary Search Tree

9Each node x has:

5 12
– key[x]
– Pointers:

1 6
left[x]
right[x]

7

right[x]
p[x]

88



S h TBinary Search Tree

9Property: for any node x:
– For all nodes y in the left

5 12

For all nodes y in the left
subtree of x:

key[y] ≤ key[x]

1 6

key[y] ≤ key[x]
– For all nodes y in the right  
subtree of x:

7

subtree of x:
key[y] ≥ key[x]

8

Given a set of keys, is BST 
for those keys unique? 8



No uniqueness

97

5 125 9

1 61 6 8 12

7

88



h d ST ?What can we do given BST ?
Sort !

INORDER TREE WALK( )INORDER-TREE-WALK(x)
1. if x ≠ NIL
2 then INORDER TREE WALK(l ft[ ])2.     then INORDER-TREE-WALK(left[x])
3.              print key[x]
4 INORDER TREE WALK( i ht[ ])4.              INORDER-TREE-WALK(right[x])

A d t lk i t th t b f thA preorder tree walk prints the root before the 
values in either subtree, and a postorder tree walk

i t th t ft th l i it btprints the root after the values in its subtrees.



S ?Sort ?

9

5 12

1 6

7

88



S ?Sort ?
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S ?Sort ?
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S ?Sort ?
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S ?Sort ?
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S ?Sort ?
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S ?Sort ?
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S ?Sort ?

9
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1 5 6 7 8
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S ?Sort ?

1 5 6 7 8

9 12



A l f d lkAnalysis of inorder-walk
Theorem. If x is the root of an n-node subtree, then the 
call INORDER-TREE-WALK(x) takes Θ(n) times.

Substitution method
T( ) ( + d) +T(n) = (c + d)n + c

Base case: n = 0, T(0) = (c + d) · 0 + c = c
For n > 0, 
T(n) = T(k) + T(n − k − 1) + dT(n)  T(k) + T(n  k  1) + d

= ((c + d)k + c) + ((c + d) · (n − k − 1) + c) + d
= (c + d)n + c − (c + d) + c + d(c + d)n + c  (c + d) + c + d
= (c + d)n + c



SSorting

Does it mean that we can sort n keys in O(n) time?

No.No.
It just means that building a binary 
search tree takes Ω(nlgn) timesearch tree takes Ω(nlgn) time
(in the comparison model)



ST dBST as a data structure

Operations: 9

– Insert(x)
– Delete(x) 5 12( )
– Search(k)

1 6

7

88



S hSearch
TREE-SEARCH(x, k)
1. if x = NIL or k = key[x]y[ ]
2.     then return x
3. if k < key[x]y[ ]
4.     then return TREE-SEARCH(left[x], k)
5.     else return TREE-SEARCH(right[x], k)( g [ ] )



S hSearch
ITERATIVE-TREE-SEARCH(x, k)
1. while x ≠ NIL and k ≠ key[x]≠ ≠ y[ ]
2.     do if k < key[x]
3.             then x ← left[x]f [ ]
4.             else x ← right[x]
5. return x

On most computers, this version is more efficient.On most computers, this version is more efficient.



dMinimum and maximum
TREE-MINIMUM(x)
1. while left[x] ≠ NIL 9f [ ] ≠
2.     do x ← left[x]
3. return x 5 12

TREE-MAXIMUM(x) 1 6TREE MAXIMUM(x)
1. while right[x] ≠ NIL
2. do x ← right[x] 72.     do x ← right[x]
3. return x

88



S d dSuccessor and predecessor
Which is the node

15
Which is the node 
15's successor

6 18

3 7 17 20

132 4

99



S d dSuccessor and predecessor

15

6 18

3 7 17 20

132 4
Whi h i th d

9

Which is the node 
13's successor

9



S d dSuccessor and predecessor
TREE-SUCCESSOR(x)
1. if right[x] ≠ NILg [ ] ≠
2.     then return TREE-MINIMUN(right[x])
3. y ← p[x]y p[ ]
4. while y ≠ NIL and x = right[y]
5.     do x ← yy
6.          y ← p[x]
7. return yy

Running time
O(h)



C STConstructing BST
TREE INSERT(T ) R i ti 9TREE-INSERT(T, z)
1. y ← NIL
2 x ← root[T]

Running time
O(h)

5 12
2. x ← root[T]
3. while x ≠ NIL
4.     do y ← x

1 65.          if key[z] < key[x]
6.             then x ← left[x]
7 l i ht[ ]

72
7.             else x ← right[x]
8. p[z] ← y
9. if y = NIL

8

9. if y  NIL
10.  then root[T] ← z
11.  else if key[z] < key[y]

TREE-INSERT(T, 2)12.             then left[x] ← z
13.             else right[x] ← z



A lAnalysis
After we insert n elements, 
what is the worst possible 

1
p

BST height?

P b d 1

2

Pretty bad: n − 1
3

Average: O(nlgn)
4

Average: O(nlgn)

5



l )Deletion (case 1)
15 15

5 16 5 16

3 12 20 3 12 20

18 2310 13

z
18 2310

6
z

6

7 7z has no child.



l )Deletion (case 2)
15 15

5 16 z 5 20

3 12 20 3 12 18 23

18 2310 13 10

6 6

7 7z has one child.



l )Deletion (case 3)
15 15

y
5 16z 6 16

3 12 20 3 12 20

18 2310 13 18 2310 13

6 y 7

7 z has two children.



lDeletion
TREE DELETE(T )TREE-DELETE(T, z)
1. if left[z] = NIL or right[z] = NIL 
2 then y ← z

Running time:
O(h)2.    then y ← z

3.    else  y ← TREE-SUCCESSOR(z)
4. if left[y] ≠ NIL 

O(h)

5.    then x ← left[y]
6.    else x ← right[y]
7 if ≠ NIL

9.  if p[y] = NIL
10 then root[T] ← x7. if x ≠ NIL 

8.    then p[x] ← p[y]
10.  then root[T] ← x
11.  else if y = left[p[y]]
12.             then left[p[y]] ← x

N '
f p y

13.             else right[p[y]] ← x
14. if y ≠ z
15 th k [ ] k [ ]

Note: z's successor 
just has one child or 

h h ld 15.    then key[z] ← key[y]
16. return y

z has one child.



l d hBalanced search trees

1Balanced search trees, 
or how to avoid this

2
or how to avoid this 
even in the worst case

3
AVL (Adelson-Veskii and Landis) 

4

( )
tree is identical to a binary search 
tree, except that for every node in the 

5

, p y
tree, the height of the left and right 
subtrees can differ by at most 1.y



AAVL trees

5 7

2 8 2 8

1 4 1 471 4

3

1 4

3 5

7

3 3 5

Which one is AVL tree?Which one is AVL tree?



AAVL trees
A i l i i h i f h iA violation might occur in four case when we insert 
new node to the AVL tree. 

Case 1: an insertion into the left subtree of the 
left child of R.
Case2 : an insertion into the right subtree of the 
left child of Rleft child of R.
Case 3: an insertion into the left subtree of the 
right child of Rright child of R.
Case 4: an insertion into the right subtree of the 
i ht hild f Rright child of R.



S lSingle rotation

B AB

A B

A

A

β

γ B

αβ β
α γ

α

Ri ht t ti t fi 1Right rotation to fix case 1



S lSingle rotation

A B

B

A B

A

β

α B

γ

A

β β
γ

α
γγ

L ft t ti t fi 4Left rotation to fix case 4



blDouble rotation

C

A δ

Bα

β γ

Si l t ti f il t fi 2Single rotation fails to fix case 2



bl f )Double rotation (first step)

C C

A δ B δ

α B γA

β γ α β

L ft t tiLeft rotation



bl d )Double rotation (second step)

C B

B δ A C

γA α β γ δ

α β

Ri ht t tiRight rotation



blDouble rotation

C B

A δ A C

B α β γ δα

β γ

L ft i ht d bl t ti t fi 2Left-right double rotation to fix case 2



blDouble rotation

A B

A Cα C

B δ α β γ δ

β γ

Ri ht l ft d bl t ti t fi 3Right-left double rotation to fix case 3



AAVL tree rotation
Four types Rotation

Case 1: Left-left Right rotationf f g
Case 4: Right-right Left rotation
Case 2: Left right Left right double rotationCase 2: Left-right Left-right double rotation
Case 3: Right-left Right-left double rotation



A lAVL tree example

3 3

2

Insert 2



A l )AVL tree example (cont.)

3 2

2 1 3

11

Right rotationInsert 1



A l )AVL tree example (cont.)

2 2

1 3 1 4

4 3 5

55

Left rotationInsert 4 and 5



A l )AVL tree example (cont.)

2 4

1 4 2 5

3 5 61 3

66

Insert 6 Left rotation



A l )AVL tree example (cont.)

4 4

2 5 2 6

61 3 1 3 5 7

77

Insert 7 Left rotation



A l )AVL tree example (cont.)

4 4

2 6 2 6

1 3 5 7 1 3 5 15

16 7 16

15

Insert 16 and 15 Right-left rotation



A l )AVL tree example (cont.)
4 4

2 6 2 7

1 3 5 15 1 3 6 15

7 16 14 165

14

Insert 14 Right-left rotation



A l )AVL tree example (cont.)
4 7

2 7 4 15

1 3 6 15 2 6 14 16

14 165 531 13

13

Insert 13 Left rotation



A l )AVL tree example (cont.)
7 7

4 15 4 15

2 6 14 16 2 6 13 16

531 13 531 1412

12

Insert 12 Right rotation



A l )AVL tree example (cont.)
7 7

4 15 4 13

2 6 13 16 2 6 12 15

531 1412 531 11 1614

11

Insert 11 Right rotation



A l )AVL tree example (cont.)
77

4 134 13

2 6 11 152 6

1

12 15

531 10 161412

10

531 11 1614

10

Insert 10 Right rotation



A l )AVL tree example (cont.)

4 13

7

4 13

7

4

2 6

13

11 15

4

2 6

13

11 15

531 10 161412 531 9 161412

8 8 10

9

Insert 8 and 9 Left-right rotation



d bl kRed-black trees
BSTs with an extra one-bit color field in each node.

Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x to a descendant 

leaf have the same number of black nodes.



l f d bl kExample of a red-black tree

7

183

10 22NIL NIL

268 11 NIL

NIL NIL NIL NIL NIL NIL



l f d bl kExample of a red-black tree

7

183

10 22

268 11

nil[T]



h f d bl kHeight of a red-black tree



h f d bl kHeight of a red-black tree



h f d bl kHeight of a red-black tree



h f d bl kHeight of a red-black tree



h f d bl kHeight of a red-black tree



f d bl kLemma of red-black tree
We call the number of black nodes on any path from, 
but not including, a node x down to a leaf the black-
height of the node, denoted bh(x).

LLemma.
A red-black tree with n internal nodes has height at 
most 2lg(n + 1)

D i t ti h i i iDynamic-set operations search, minimum, maximum, 
successor, and predecessor can be implemented in 
O(l ) ti d bl k tO(lgn) time on red-black trees. 



fProof
S b d d i l 2bh( ) 1Subtree rooted at any node x contains at least 2bh(x) – 1
internal nodes.

Base case:
Height of x is 0, then x must be a leaf (nil[T]), subtree 
rooted at x contains at least 
2bh(x) – 1 = 20 – 1 = 0 internal nodes.
Inductive:
Height of a child of x is less than the height of x itselfHeight of a child of x is less than the height of x itself, 
subtree rooted at x contains at least
(2bh(x) - 1 1) + (2bh(x) - 1 1) + 1 2bh(x) 1 i t l(2bh(x) - 1 – 1) + (2bh(x) - 1 – 1) + 1 = 2bh(x) – 1 internal 
nodes.



f )Proof (cont.)
A di 4 l h dAccording to property 4, at least the nodes on any 
simple path from the root to a leaf, not including the 

b bl kroot, must be black.

Consequently, the black-height of the root must be atConsequently, the black height of the root must be at 
least h/2; thus,

n ≥ 2h/2 - 1 – 1.

h ≤ 2l ( + 1)

⇒

h ≤ 2lg(n + 1).



fLeft rotation
LEFT ROTATE(T )

y

x
LEFT-ROTATE(T, x)
1. y ← right[x]
2 right[x] left[y]

β

α
y2. right[x] ← left[y]

3. p[left[y]] ← x
4 p[y] ← p[x] γ4. p[y] ← p[x]
5. if p[x] = nil[T]
6 then root[T] ← y

y

6.    then root[T] ← y
7.    else if x = left[p[x]]
8 then left[p[x]] ← y

x
8.              then left[p[x]] ← y
9. else right[p[x]] ← y
10 left[y] ← x β γα10. left[y] ← x
11. p[x] ← y



RB-Insertion
RB INSERT(T z)RB-INSERT(T, z)
1.  y ← nil[T]
2.  x ← root[T][ ]
3.  while x ≠ nil[T]
4.      do y ← x 9.  if y = nil[T]

10 then root[T] z5.          if key[z] < key[x]
6.              then x ← left[x]
7 else x ← right[x]

10.      then root[T] ← z
11.      else if key[z] < key[y]
12. then left[y] ← z7.              else x ← right[x]

8.  p[z] ← y
12.          then left[y] z
13. else right[y] ← z
14. left[z] ← nil[T]
15. right[z] ← nil[T]
16. color[z] ← RED
17 RB INSERT FIXUP(T z)17. RB-INSERT-FIXUP(T, z)



RB-Insertion

Which of the red-black properties can be 
violated upon the call to RB-INSERT-FIXUP?



)RB-Insertion (case 1)
Change color

11 11

Change color

14

15

2

1 7

14

15

2

1 7

y

z151 7

5 8 y

151 7

5 8

z

4 z

y

4

Case 1: z's uncle y is red



)RB-Insertion (case 2)
Left rotation

11 11

Left rotation

14

15

2

1 7

y

z

14

15

7

2 8

y

z151 7

5 8

z 152 8

1 5

z

4 4

5

Case 2: z's uncle y is black and z is a right child.
Convert case 2 to 3.



)RB-Insertion (case 3)
Right rotation

711

Right rotation

112

1 5

z

8 14

14

15

7

2 8

y

z

15

1 5

4

8 14152 8

1 5

z

154

4

5

Case 3: z's uncle y is black and z is a left child



RB-tree insertion
Types Operation

Case 1L: z's uncle is red. Change color.

z's father is 
l ft hild

Case 1L: z s uncle is red. Change color.
Case 2L: z's uncle is black 
and z is right child. Left rotation, p(z).

left child g
Case 3L: z's uncle is black 
and z is left child. Right rotation, p(p(z)).f

' f h

Case 1R: z's uncle is red. Change color.
Case 2R: z's uncle is black Ri h ( )z's father is 

right child

Case 2R: z s uncle is black 
and z is left child. Right rotation, p(z).

Case 3R: z's uncle is black L ft t ti ( ( ))and z is right child. Left rotation, p(p(z)).



RB-Insertion
RB-INSERT-FIXUP(T, z)
1.  while color[p[z]] = RED

i l f2.      do if p[z] = left[p[p[z]]]
3.             then y ← right[p[p[z]]]
4 if color[y] = RED4.                if color[y] = RED
5.                    then color[p[z]] ← BLACK
6.                             color[y] ← BLACK                 

Case 1
Case 1[y]

7.                             color[p[p[z]]] ← RED             
8.                             z ← p[p[z]]

Case 1
Case 1



RB-Insertion

9.  else if z = right[p[z]] 
10.                      then z ← p[z] Case 2p[ ]
11.  LEFT-ROTATION(T, z)
12.                         color[p[z]] ← BLACK
13 l [ [ [ ]]] RED

Case 2
Case 3

13.                         color[p[p[z]]] ← RED
14.  RIGHT-ROTATION(T, p[p[z]])
15 else (same as then clause

Case 3
Case 3

15.             else (same as then clause 
with "right" and "left" exchanged)

16.  color[root[T]] ← BLACK

Running time:Running time:
O(lgn)



lRB-Example
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

10
Change color

z10 10z10



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

No change
10 10

z

10

2

10

2

Node z’s fatherNode z’s father 
is black, so stop.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

No change
10 1010

2 z12

10

2 12

Node z’s fatherNode z’s father 
is black, so stop.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Change color
10 z1010

2 12 y

z10

2 12

z4 4

Case 1L: z's uncle y is red and we get new zCase 1L: z s uncle y is red and we get new z.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5

Node z is 
root, so stop.

z

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5
Change color

10 z10z10

2 12

z10

2 12

4 4



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Left rotation
10 1010

2 12

10

4 12

4 62yNIL

z6

Case 3R: z's uncle y is black and z is a right childCase 3R: z s uncle y is black and z is a right child.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5

Node z’s father 
is black, so stop.

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5
Change color

10 1010

4 12 z

10

4 12

62 y 62

z8 8

Case 1R: z's uncle y is red and we get new zCase 1R: z s uncle y is red and we get new z.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

No change
10 1010

4 12

10

4 12

62 62

8z1 81

Node z’s father 
i bl kis black, so stop.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Left rotation
10 1010

4 12

10

4 12

62 82

81 z 91 6

z9

Case 3R: z's uncle y is black and z is a right childCase 3R: z s uncle y is black and z is a right child.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Change color
10 1010

4 12

10

4 12 y

2 8 82 z

1 96 y 91 6

z7

Case 1L: z's uncle y is red and we get new z
7

Case 1L: z s uncle y is red and we get new z.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Left rotation
10 1010

4 12 y

10

8 12 y

z2 8 94 z

1 96 2 6

Case 2L: z's uncle y is black and z is a right child
7 71

Case 2L: z s uncle y is black and z is a right child.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Right rotation10 810

8 12 y

8

104

94 z 2 6 9 12

2 6 71

Case 3L: z's uncle y is black and z is a left child
71

Case 3L: z s uncle y is black and z is a left child.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

No change
8 88

104

8

104

2 6 9 12 2 6 9 12

71 3 71 3

z

Node z’s father 
is black so stopis black, so stop.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

No change
8 88

104

8

104

2 6 9 12 2 6 9 12

71 3 11 71 3 11z

Node z’s father 
is black so stopis black, so stop.



l )RB-Example (cont.)
INSERT 10 2 12 4 6 8 1 9 7 3 11 5INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

No change
8 88

104

8

104

2 6 9 12 2 6 9 12

1 3 117 1 3 115 75

z

Node z’s father 
i bl kis black, so stop.



lRB-Deletion
RB DELETE(T )RB-DELETE(T, z)
1.  if left[z] = nil[T] or right[z] = nil[T] 
2 then y ← z2.     then y ← z
3.     else  y ← TREE-SUCCESSOR(z)
4.  if left[y] ≠ nil[T] 
5.     then x ← left[y]
6.     else x ← right[y]
7 [ ] [ ]

10.     else if y = left[p[y]]
11 then left[p[y]] ← x7.  p[x] ← p[y]

8.  if p[y] = nil[T] 
9. then root[T] ← x

11.             then left[p[y]] ← x
12.             else right[p[y]] ← x
13. if y ≠ z9.      then root[T] ← x y
14.    then key[z] ← key[y]
15. if color[y] = BLACK
16 th RB DELETE FIXUP(T )16.     then RB-DELETE-FIXUP(T, x)
17. return y



lRB-Deletion

Which of the red-black properties can be 
violated upon the call to RB-DELETE-FIXUP?



l )RB-Deletion (case 1)

B D

DA

C E

wx B

A C w

E

xC Eβα

ζ

A C w

β δ

x ζε

δγ ζε βα δγ

Case 1: x's sibling w is red.
Convert case 1 to 2, 3, or 4., ,



l )RB-Deletion (case 2)

BxB

DA

C E

DA

C E

wx

C Eβα

ζ

C Eβα

ζ δγ ζεδγ ζε

Case 2: x's sibling w is black, and 
both of w's children are black.
Get the new node x.



l )RB-Deletion (case 3)

BB

CA

D

DA

C E

wx x w

E

Dβα γC Eβα

ζ Eδ

ζ

δγ ζε

Case 3: x's sibling w is black, and w's left 
children is red, and w's right child is black.

ζε
, g

Convert case 3 to 4.



l )RB-Deletion (case 4)

B D

DA

C E

wx B

A C

E

C Eβα

ζ

A C

β δ

ζε

δγ ζε βα δγ x = root[T]

Case 4: x's sibling w is black, and w's right 
child is red.
Terminate the while loop.



d lRB-tree deletion
T O tiTypes Operation

Case 1L: x's sibling w is red. Left rotation, p(x).
Case 2L: x's sibling w is black and both of w's

z is left
child

Case 2L: x's sibling w is black and both of w's 
children are black. Change color.

Case 3L: x's sibling w is black, and w's left Right rotation wchild
children is red, and w's right child is black. Right rotation, w.

Case 4L: x's sibling w is black, and w's right
child is red. Left rotation, p(x).child is red.
Case 1R: x's sibling w is red. Right rotation, p(x).
Case 2R: x's sibling w is black and both of w's Change color

z is right 
child

children are black. Change color.

Case 3R: x's sibling w is black, and w's right
children is red and w's left child is black Left rotation, w.children is red, and w s left child is black.
Case 4R: x's sibling w is black, and w's left
child is red. Right rotation, p(x).



TRB-DELETE
RB-DELETE-FIXUP(T, z)
1.  while x ≠ root[T] and color[x] = BLACK

i l f2.      do if x = left[p[x]]
3.          then w ← right[p[x]]
4 if color[w] = RED4.              if color[w] = RED
5.                  then color[w] ← BLACK
6.                           color[p[x]] ← RED                 

Case 1
Case 1[p[ ]]

7.                           LEFT-ROTATION(T, p[x])
8.                           w ← right[p[z]]
9 if l [l f [ ]] BLACK d l [ h [ ]] BLACK

Case 1
Case 1

9.              if color[left[w]] = BLACK and color[right[w]] = BLACK 
10.                 then color[w] ← RED
11 x ← p[x]

Case 2
Case 211.                          x ← p[x] Case 2



lRB-Deletion

12.             else if color[right[w]] = BLACK 
13.                        then color[left[w]] ← BLACK Case 3[ f [ ]]
14.                                color[w] ← RED
15.                                RIGHT-ROTATION(T, w)
16 i h [ [ ]]

Case 3
Case 3
C 316.                                w ← right[p[x]]

17.                        color[w] ← color[p[x]]
18 color[p[x]] ← BLACK

Case 3
Case 4
Case 418.                        color[p[x]] ← BLACK

19.                        color[right[w]] ← BLACK
20.                        LEFT-ROTATION(T, p[x])

Case 4
Case 4
Case 4( p )

21.                        x ← root[T]
22.         else (same as then clause 

ith " i ht" d "l ft" h d)

Case 4

with "right" and "left" exchanged)
23.  color[x] ← BLACK



A l f lAnalysis of RB-Deletion
What is the running time of RB-DELETE?

Running time:
O(lgn)O(lgn)



lRB-Example
D l 3Delete 3

Delete
8 88

104

8

104

2 6 9 12 2 6 9 12

1 3 117 1 115 75

z

Node z is red.



lRB-Example
D l 2Delete 2

Delete
8 88

104

8

104

2 6 9 12z 1 6 9 12x

1 1175 1175



lRB-Example
D l 2Delete 2

Chang color
8 88

104

8

104

1 6 9 12x 1 6 9 12x

1175 1175

Node x is red.



lRB-Example
D l 9Delete 9

Delete
8 88

104

8

104

12z 9 12NILx w1 61 6

11 117575



lRB-Example
D l 9Delete 9

Right rotation
8 88

104

8

104

12NILx w1 6 11NILx w1 6

11 NIL75 1275

Case 3L: x's sibling w is black and w's left childCase 3L: x s sibling w is black, and w s left child 
is red and w's right child is black.



lRB-Example
D l 9Delete 9

Left rotation
8 88

104

8

114

11NIL wx1 6 12x w101 6

1275 75

Case 4L: x's sibling w is black and w's right childCase 4L: x s sibling w is black, and w s right child 
is red.



lRB-Example
D l 4Delete 4

Exchange
8 88

114 z

8

115

12101 6 12101 6

75 7z

Which is 4's successor?



lRB-Example
D l 4Delete 4

Delete
88 8

115

8

115

12101 612101 6

7z 7

Node z is red.



lRB-Example
D l 10Delete 10

Delete
8 88

115

8

115

12z 101 6 121 6 NILx w

7 7



lRB-Example
D l 10Delete 10

Change color
8 88

115

8

115 x

1 6 121 6 NIL12NILx w

7 7NIL NIL

Case 2L: x's sibling w is black and both of w'sCase 2L: x s sibling w is black, and both of w s 
children are black. Then, we get new x.



lRB-Example
D l 10Delete 10

Change color
8 88

115

8

115 xx

1 6 121 612

7 7Node x is red.



lRB-Example
D l 11Delete 11

Delete
8 88

115 z

8

125 x

1 6 12 1 6

7 7



lRB-Example
D l 11Delete 11

Change color
8 88

125 x

8

125 x

1 6 1 6

7 7Node x is red.



lRB-Example
D l 8Delete 8

Exchange
8 z 128

125

z 12

5 z

1 6 1 6

7 7

Which is 8's successor?



lRB-Example
D l 8Delete 8

Delete
12 1212

5 z

12

5 xNILw

1 6 1 6

7 7



lRB-Example
D l 8Delete 8

Right rotation
12 512

5 xNILw

5

121

1 6 6 xw NIL

7 7

Case 1R: x's sibling w is redCase 1R: x s sibling w is red.



lRB-Example
D l 8Delete 8

Left rotation
5 55 5

121121

7 xw NIL6 xw NIL

67NIL

Case 3R: x's sibling w is black and w's rightCase 3R: x s sibling w is black, and w s right 
child is red and w's left child is black.



lRB-Example
D l 8Delete 8

Right rotation
5 55

121

5

71

7 xw NIL 6 12

6

Case 4R: x's sibling w is black and w's left childCase 4R: x s sibling w is black, and w s left child 
is red.



T l d k dTypical disk drive



B-tree
root[T]

P

root[T]

C G M T X

A B D E F J K L N O Q R S U V Y ZA B D E F J K L N O Q R S U V Y Z

The minimum degree for this B-tree is t = 2, 
every node other than the root must have at 
least 1 keys and every node can contain at 
most 3 keys (2-3-4 tree)



k )B-tree (1000 keys)
[T]

1000

root[T]

1000

1000 1000 1000
10001

1000 1000 1000. . .

10001 1000110001

1000 1000 1000. . .

Each internal node and leaf contains 1000 keysEach internal node and leaf contains 1000 keys.



f fDefinition of B-trees
A B T h h f ll i iA B-tree T haves the following properties:
1. Every node x has the following fields:

n[x], the number of keys currently stored in node x;
the n[x] keys themselves, stored in nondecreasing
order, so that key1[x] ≤ key2[x] ≤ … ≤ keyn[x][x];
leaf[x], a boolean value that is TRUE if x is a leaf 
and FALSE if x is an internal node.

2. Each internal node x also contains n[x] + 1 has the[ ]
pointers c1[x], c2[x], …, cn[x] + 1 [x] to its children. 
Leaf nodes have no children, so their ci fields are, i
undefined.



f fDefinition of B-trees
3 Th k k [ ] f k d i3. The keys keyi[x] separate ranges of keys stored in  

each subtree: if ki is any key stored in the subtree
i h [ ] hwith root ci[x], then

k1 ≤ key1[x] ≤ k2 ≤ key2[x] ≤ … ≤ keyn[x][x] ≤ kn[x] + 1

4. All leaves have the same depth, which is the tree's 
height hheight h.



f fDefinition of B-trees
5 Th l d b d h b f5. There are lower and upper bounds on the number of 

key a node can contain (t ≥ 2, minimum degree)
Every node other than the root must have at least 
t – 1 keys. Every internal node other than the root 
thus has at least t children;
Every node can contain at most 2t – 1 keys. An 
internal node can have at most 2t children.

Theorem If n ≥ 1 then for any n key B tree T of heightTheorem. If n ≥ 1, then for any n-key B-tree T of height 
h and minimum degree t ≥ 2, 

h ≤ log nh ≤ logt n.



S hSearching a B-tree

P

root[T]
SEARCH KSEARCH K

P

C G M T X

A B D E F J K L N O Q R S U V Y Z



S hSearching a B-tree

P

root[T]
SEARCH K

P

C G M T X

A B D E F J K L N O Q R S U V Y ZK



S l )Splitting (B-tree)
Try to INSERT T

R X

S U VP Q Y Z

Minimum degree t = 2



S l )Splitting (B-tree) 
Try to INSERT T

R X R XU

S U VP Q Y Z S VP Q Y Z

Number of 
keys = 3

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
F

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
F S

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
F Q S

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
F Q S Q

Splitting

F S
#keys = 3

Case 1: current node is root and has 3 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
Q Q

Insert K

F S F SK

#keys < 3

Case 2: current node has at most 2 keys and the appropriate 
subtree has at most 2 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
Q Q

Insert C

F SK F SKC

#keys < 3

Case 2: current node has at most 2 keys and the appropriate 
subtree has at most 2 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
Q

Splitting
QF

F SKC SKC

#keys = 3

Case 3: current node has at most 2 keys and the appropriate 
subtree has 3 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Insert L
QF QF

SKC SKC L

#keys < 3

Case 4: the appropriate subtree has at most 2 keys (after 
case 3).

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Insert H
QF QF

SKC L SHC K L

#keys < 3

Case 2: current node has at most 2 keys and the appropriate 
subtree has at most 2 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Insert T
QF QF

SHC K L SHC K L T

#keys < 3

Case 2: current node has at most 2 keys and the appropriate 
subtree has at most 2 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Insert V
QF QF

SHC K L T SHC K L T V

#keys < 3

Case 2: current node has at most 2 keys and the appropriate 
subtree has at most 2 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Splitting
QF QF T

SHC K L T V SHC K L V

#keys = 3

Case 3: current node has at most 2 keys and the appropriate 
subtree has 3 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Insert W
QF T QF T

SHC K L V SHC K L V W

#keys < 3

Case 4: the appropriate subtree has at most 2 keys (after 
case 3).

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
#keys = 3

Splitting

#keys = 3
QF T Q

SHC K L V W F T
Increase 
height

SHC K L V WSHC K L V W

Case 1: current node is root and has 3 keys.

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
Q

#keys < 3

F T

#keys < 3

SHC K L V WSHC K L V W

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
Q

Splitting
Q

F T
#keys = 3

F TK

SHC K L V W SHC L V WSHC K L V W SHC L V W

Case 3: current node has at most 2 keys and the appropriate 

Minimum degree t = 2
subtree has 3 keys.



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.

Insert M
Q Q

F TK F TK
#keys < 3

SHC L V W SHC L V WM

y

SHC L V W SHC L V WM

Case 4: the appropriate subtree has at most 2 keys (after 
case 3).

Minimum degree t = 2



)Insertion (B-tree)
INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B,

X, Y, D, Z, E.
F Q

B TK W

NCA H R SLD E P V YX ZNCA H R SLD E P V YX Z



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P

#keys > 1

Minimum degree t = 2

F Q

y

B TK W

NCA H R SLD E P V YX Z



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

F Q

#keys > 1

B TK W

NCA H R SLD E P V YX Z



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

F Q

Delete Y
F Q

B TK W B TK W

NCA H R SLD E P V YX Z NCA H R SLD E P V X Z

#keys > 1

Case 1: key k = Y is in a leaf.



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

#keys > 1
F Q

y

B TK W

NCA H R SLD E P V X Z



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

F Q

#keys > 1

B TK W

NCA H R SLD E P V X Z



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

F Q
Exchange X and W
Delete X

F Q

B TK W

Delete X
B TK X

NCA H R SLD E P V X Z NCA H R SLD E P V Z

Case 2-a: key k = W is in a internal node and one of its 
#keys > 1

children that precedes or follows k has at least 2 keys.



l )Deletion (B-tree)
DELETE F other than W Minimum degree t = 2

#keys > 1
F Q

y

#keys = 1 Merge
Q

B TK W B TF K W

NCA H R SLD E P V X Z NCA H R SLD E P V X Z

Case 2-b: key k = F is in a internal node and the both of its 
children that precedes or follows k only has 1 key.



l )Deletion (B-tree)
DELETE F other than W Minimum degree t = 2

Exchange F and E
Delete E

Q Q

Delete E
B TF K W B TE K W

NCA H R SLD E P V X Z NCA H R SLD P V X Z

Case 2-a: key k = F is in a internal node and one of its 
#keys > 1

children that precedes or follows k has at least 2 keys.



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

F Q

#keys > 1

Exchange Q and R
Delete R

F R

B TK X

#keys > 1 Delete R
B TK X

NCA H R SLD E P V Z NCA H SLD E P V Z

Whi h i Q' ? It i R
Case 2-a: key k = Q is in a internal node and one of its 

Which is Q's successor? It is R.

children that precedes or follows k has at least 2 keys.



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Merge
F R F R

B TK X B TK

NCA H SLD E P V Z NCA H SLD E P V ZX

Case 2-b: key k = X is in a internal node and the both of its 
#keys = 1

children that precedes or follows k only has 1 key.



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Delete X
F R F R

B TK B TK

NCA H SLD E P V ZX NCA H SLD E P V Z

Current node is { V, X, Z }
#keys > 1



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Merge
F R#keys = 1 F

B TK B TK R

NCA H SLD E P V Z NCA H SLD E P V Z

Case 3-b: key k = K is not present in a internal node and 
the appropriate subtree that must contain k has only 1 key 
and the subtree's immediate siblings have only 1 key . 



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Exchange K and L
Delete L

F F

Delete L
B TK R B TL R

NCA H SLD E P V Z NCA H SD E P V Z

Case 2-a: key k = K is in a internal node and one of its 
#keys > 1

children that precedes or follows k has at least 2 keys.



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Borrow one key 
from the sibling

F

#keys = 1 #keys > 1

L

from the sibling
B TL R B TF R

NCA H SD E P V Z NCA H SD E P V Z

Case 3-a: key k = B is not present in a internal node and the 
appropriate subtree that must contain k has only 1 key and 
one of the subtree's immediate siblings has at least 2 keys .



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Exchange B and C
Delete C

L L

Delete C
B TF R C TF R

NCA H SD E P V Z NA H SD E P V Z

Case 2-a: key k = B is in a internal node and one of its 
#keys > 1

children that precedes or follows k has at least 2 keys.



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Borrow one key 
from the sibling

L L

from the sibling
C TF R C TE R

NA H SD E P V Z NA H SD F P V Z

Case 3-a: key k = H is not present in a internal node and the 
#keys = 1#keys > 1

appropriate subtree that must contain k has only 1 key and 
one of the subtree's immediate siblings has at least 2 keys .



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Delete H
L L

C TE R C TE R

NA H SD F P V Z NA SD F P V Z

Case 1: key k = H is in a leaf.
#keys > 1



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

#keys > 1

L

y
C TE R

NA SD F P V Z



l )Deletion (B-tree)
DELETE Y, W, Q, X, K, B, H, P Minimum degree t = 2

Delete P
LL

C TE RC TE R

A SD F N V ZNA SD F P V Z

Case 1: key k = P is in a leaf.
#keys > 1



B-tree
Th k dThinking and practice.

Write code for B-TREE-SEARCH(x, k)
Write code for B-TREE-SPLIT-CHILD(x, i, y)
Write code for B-TREE-INSERT(T, k)
Write code for B-TREE-DELETE(T, k)

How about B+ tree?



Any question?y q s ?
Xi i  ZhXiaoqing Zheng

Fundan Universityy


