Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Binary trees

Binary Search Tree

- Each node *x* has:
 - -key[x]
 - Pointers:
 - left[x]
 - *right*[*x*]
 - p[x]

Binary Search Tree

- Property: for any node x:
 For all nodes y in the left subtree of x:
 key[y] ≤ key[x]
 For all nodes y in the right subtree of x:
 key[y] ≥ key[x]
- Given a set of keys, is BST for those keys *unique*?

No uniqueness

What can we do given BST ?

Sort !

INORDER-TREE-WALK(*x*)

1. if $x \neq \text{NIL}$

- 2. **then** INORDER-TREE-WALK(*left*[*x*])
- 3. print key[x]
- 4. INORDER-TREE-WALK(*right*[x])

A *preorder tree walk* prints the root before the values in either subtree, and a *postorder tree walk* prints the root after the values in its subtrees.

Theorem. If x is the root of an *n*-node subtree, then the call INORDER-TREE-WALK(x) takes $\Theta(n)$ times.

Substitution method

T(n) = (c+d)n + c

Base case: n = 0, $T(0) = (c + d) \cdot 0 + c = c$ For n > 0, T(n) = T(k) + T(n - k - 1) + d $= ((c + d)k + c) + ((c + d) \cdot (n - k - 1) + c) + d$ = (c + d)n + c - (c + d) + c + d

$$= (c+d)n+a$$

Sorting

Does it mean that we can sort n keys in O(n) time?

No.

It just means that building a binary search tree takes $\Omega(nlgn)$ time (in the comparison model)

BST as a data structure

• **Operations**:

- -Insert(x)
- -Delete(x)
- -Search(k)

Search

TREE-SEARCH(x, k)

- 1. **if** x = NIL or k = key[x]
- 2. then return *x*
- 3. if $k \leq key[x]$
- 4. **then return** TREE-SEARCH(*left*[*x*], *k*)
- 5. **else return** TREE-SEARCH(*right*[*x*], *k*)

Search

ITERATIVE-TREE-SEARCH(*x*, *k*)

- 1. while $x \neq \text{NIL}$ and $k \neq key[x]$
- 2. **do if** k < key[x]
- 3. then $x \leftarrow left[x]$
- 4. **else** $x \leftarrow right[x]$
- 5. return *x*

On most computers, this version is more efficient.

Minimum and maximum

TREE-MINIMUM(x) 1. while $left[x] \neq NIL$ 2. do $x \leftarrow left[x]$ 3. return x

TREE-MAXIMUM(x) 1. while $right[x] \neq NIL$ 2. do $x \leftarrow right[x]$ 3. return x

Successor and predecessor

Successor and predecessor

Successor and predecessor

TREE-SUCCESSOR(x)

- 1. **if** $right[x] \neq NIL$
- 2. **then return** TREE-MINIMUN(*right*[*x*])
- 3. $y \leftarrow p[x]$
- 4. while $y \neq \text{NIL}$ and x = right[y]
- 5. **do** $x \leftarrow y$
- $6. \qquad y \leftarrow p[x]$
- 7. return y

Running time O(h)

Constructing BST

Analysis

- After we insert *n* elements, what is the worst possible BST height?
- Pretty bad: *n* − 1
- Average: O(nlgn)

Deletion (case 1)

Deletion (case 2)

Deletion (case 3)

z has two children.

Deletion

TREE-DELETE(T, z)

- 1. **if** left[z] = NIL **or** right[z] = NIL
- 2. then $y \leftarrow z$
- 3. else $y \leftarrow \text{TREE-SUCCESSOR}(z)$
- 4. if $left[y] \neq NIL$
- 5. then $x \leftarrow left[y]$
- 6. else $x \leftarrow right[y]$
- 7. if $x \neq \text{NIL}$

8. then $p[x] \leftarrow p[y]$

Note: z's successor just has one child or z has one child. 9. if p[y] = NIL10. then $root[T] \leftarrow x$ 11. else if y = left[p[y]]12. then $left[p[y]] \leftarrow x$

13. else $right[p[y]] \leftarrow x$

14. **if** $y \neq z$

15. **then** $key[z] \leftarrow key[y]$

```
16. return y
```

Running time: *O*(*h*)

Balanced search trees

Balanced search trees, or how to avoid this even in the worst case

AVL (Adelson-Veskii and Landis) tree is identical to a binary search tree, except that for every node in the tree, the height of the left and right subtrees can differ by at most 1.

2 3 4

AVL trees

Which one is AVL tree?
AVL trees

A *violation* might occur in *four case* when we insert new node to the AVL tree.

Case 1: an insertion into the left subtree of the left child of R.

Case2 : an insertion into the right subtree of the left child of R.

Case 3: an insertion into the left subtree of the right child of R.

Case 4: an insertion into the right subtree of the right child of R.

Single rotation

Right rotation to fix case 1

Single rotation

Left rotation to fix case 4

Double rotation

Single rotation fails to fix case 2

Double rotation (first step)

Left rotation

Double rotation (second step)

Right rotation

Double rotation

Left-right double rotation to fix case 2

Double rotation

Right-left double rotation to fix case 3

AVL tree rotation

Four types	Rotation
Case 1: Left-left	Right rotation
Case 4: Right-right	Left rotation
Case 2: Left-right	Left-right double rotation
Case 3: Right-left	Right-left double rotation

AVL tree example

Insert 2

Insert 1

Right rotation

Insert 6

Left rotation

Left rotation

Insert 10

Right rotation

Red-black trees

BSTs with an extra one-bit color field in each node.

Red-black properties:

- **1.** Every node is either **red** or **black**.
- 2. The root is black.
- **3.** Every leaf (NIL) is **black**.
- 4. If a node is **red**, then both its children are **black**.
- **5.** All simple paths from any node *x* to a descendant leaf have the same number of **black** nodes.

Example of a red-black tree

Example of a red-black tree

Lemma of red-black tree

We call the number of black nodes on any path from, but not including, a node x down to a leaf the *blackheight* of the node, denoted bh(x).

Lemma.

A red-black tree with *n* internal nodes has height at most 2lg(n + 1)

Dynamic-set operations search, minimum, maximum, successor, and predecessor can be implemented in O(lgn) time on red-black trees.

Proof

Subtree rooted at any node *x* contains at least $2^{bh(x)} - 1$ internal nodes.

• Base case:

Height of x is 0, then x must be a leaf (nil[T]), subtree rooted at x contains at least

 $2^{bh(x)} - 1 = 2^0 - 1 = 0$ internal nodes.

Inductive:

Height of a child of x is less than the height of x itself, subtree rooted at x contains at least

 $(2^{bh(x)-1}-1) + (2^{bh(x)-1}-1) + 1 = 2^{bh(x)} - 1$ internal nodes.

Proof (cont.)

According to *property* **4**, at least the nodes on any simple path from the root to a leaf, not including the root, must be black.

Consequently, the black-height of the root must be at least h/2; thus,

 $n \geq 2^{h/2 - 1} - 1. \implies$

 $h \leq 2lg(n+1)$. \Box

Left rotation

LEFT-ROTATE(T, x)

1. $y \leftarrow right[x]$ 2. $right[x] \leftarrow left[y]$ 3. $p[left[y]] \leftarrow x$ 4. $p[y] \leftarrow p[x]$ 5. **if** p[x] = nil[T]then $root[T] \leftarrow y$ 6. 7. else if x = left[p[x]]8. then $left[p[x]] \leftarrow y$ 9. else right[p[x]] $\leftarrow y$ 10. $left[y] \leftarrow x$ 11. $p[x] \leftarrow y$

RB-Insertion

RB-INSERT(T, z)

- 1. $y \leftarrow nil[T]$ 2. $x \leftarrow root[T]$ 3. while $x \neq nil[T]$ 4. do $y \leftarrow x$ 5. if key[z] < key[x]6. then $x \leftarrow left[x]$ 7. else $x \leftarrow right[x]$ 8. $p[z] \leftarrow y$
- 9. **if** y = nil[T]
- 10. **then** $root[T] \leftarrow z$
- 11. **else if** key[z] < key[y]
- 12. **then** $left[y] \leftarrow z$
- 13. **else** $right[y] \leftarrow z$
- 14. $left[z] \leftarrow nil[T]$ 15. $right[z] \leftarrow nil[T]$ 16. $color[z] \leftarrow RED$ 17. DD DISEDT FIVUD(T
- 17. RB-INSERT-FIXUP(T, z)

RB-Insertion

Which of the red-black properties can be violated upon the call to RB-INSERT-FIXUP?

RB-Insertion (case 1)

Case 1: z's uncle y is red
RB-Insertion (case 2)

Case 2: *z*'s uncle *y* is black and *z* is a right child. Convert case 2 to 3.

RB-Insertion (case 3)

Case 3: z's uncle y is black and z is a left child

RB-tree insertion

Types		Operation
z's father is left child	Case 1L: z's uncle is red.	Change color.
	Case 2L: z's uncle is black and z is right child.	<i>Left</i> rotation, $p(z)$.
	Case 3L: z's uncle is black and z is left child.	Right rotation, $p(p(z))$.
	Case 1R: z's uncle is red.	Change color.
z's father is	Case 2R: z's uncle is black and z is left child.	Right rotation, p(z).
	Case 3R: z's uncle is black and z is right child.	<i>Left</i> rotation, $p(p(z))$.

RB-Insertion

7.

8.

RB-INSERT-FIXUP(T, z)

- 1. while color[p[z]] = RED
- 2. **do if** p[z] = left[p[p[z]]]
- 3. **then** $y \leftarrow right[p[p[z]]]$
- 4. **if** color[y] = RED
- 5. **then** $color[p[z]] \leftarrow BLACK$
- $6. \quad color[y] \leftarrow BLACK$
 - $color[p[p[z]]] \leftarrow RED$
 - $z \leftarrow p[p[z]]$

Case 1 Case 1 Case 1 Case 1

RB-Insertion

9.	else if $z = right[p[z]]$	
10.	then $z \leftarrow p[z]$	Case 2
11.	LEFT-ROTATION(T, z)	Case 2
12.	$color[p[z]] \leftarrow BLACK$	Case 3
13.	$color[p[p[z]]] \leftarrow RED$	Case 3
14.	RIGHT-ROTATION($T, p[p[z]]$)	Case 3
15.	else (same as then clause	
	with "right" and "left" exchanged)	
16.	$color[root[T]] \leftarrow BLACK$	

Running time: *O*(*lgn*)

RB-Example INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5 *Change color*

Case 1L: z's uncle y is red and we get new z.

Case 3R: z's uncle y is black and z is a right child.

Case 1R: z's uncle y is red and we get new z.

Case 3R: z's uncle y is black and z is a right child.

Case 2L: z's uncle y is black and z is a right child.

Case 3L: z's uncle y is black and z is a left child.

RB-Deletion

RB-DELETE(T, z)

- 1. **if** left[z] = nil[T] **or** right[z] = nil[T]
- 2. then $y \leftarrow z$
- 3. else $y \leftarrow \text{TREE-SUCCESSOR}(z)$
- 4. **if** $left[y] \neq nil[T]$
- 5. **then** $x \leftarrow left[y]$
- 6. else $x \leftarrow right[y]$
- 7. $p[x] \leftarrow p[y]$
- 8. **if** p[y] = nil[T]
- 9. then $root[T] \leftarrow x$
- 10. else if y = left[p[y]]11. then $left[p[y]] \leftarrow x$ 12. else $right[p[y]] \leftarrow x$ 13. if $y \neq z$ 14. then $key[z] \leftarrow key[y]$ 15. if color[y] = BLACK16. then RB-DELETE-FIXUP(*T*, *x*) 17. return *y*

RB-Deletion

Which of the red-black properties can be violated upon the call to RB-DELETE-FIXUP?

RB-Deletion (case 1)

Case 1: x's sibling w is red. Convert case 1 to 2, 3, or 4.

RB-Deletion (case 2)

Case 2: *x*'s sibling *w* is black, and both of *w*'s children are black. Get the new node *x*.

RB-Deletion (case 3)

Convert case 3 to 4.

RB-Deletion (case 4)

Case 4: x's sibling w is black, and w's right child is red. Terminate the while loop.

RB-tree deletion

Types		Operation
	Case 1L: x's sibling w is red.	<i>Left</i> rotation, $p(x)$.
z is left child	<i>Case 2L: x's sibling w is black and both of w's children are black.</i>	Change color.
	<i>Case</i> 3L: <i>x's sibling w is black, and w's left children is red, and w's right child is black.</i>	Right rotation, w.
	<i>Case</i> 4L: <i>x's sibling w is black, and w's right child is red</i> .	<i>Left</i> rotation, $p(x)$.
	Case 1R: x's sibling w is red.	Right rotation, $p(x)$.
- is sight	<i>Case</i> 2R: <i>x's sibling w is black and both of w's children are black.</i>	Change color.
z is rigni child	<i>Case</i> 3R: <i>x's sibling w is black, and w's right children is red, and w's left child is black.</i>	<i>Left</i> rotation, w.
	<i>Case</i> 4R: <i>x's sibling w is black, and w's left child is red.</i>	Right rotation, $p(x)$.

RB-DELETE

RB-DELETE-FIXUP (T, z)				
1.	while $x \neq root[T]$ and $color[x] = BLACK$			
2.	do if $x = left[p[x]]$			
3.	then $w \leftarrow right[p[x]]$			
4.	if color[w] = RED			
5.	then $color[w] \leftarrow BLACK$	Case 1		
6.	$color[p[x]] \leftarrow RED$	Case 1		
7.	LEFT-ROTATION($T, p[x]$)	Case 1		
8.	$w \leftarrow right[p[z]]$	Case 1		
9.	if color[left[w]] = BLACK and color[right[w]]	= BLACK		
10.	then $color[w] \leftarrow RED$	Case 2		
11.	$x \leftarrow p[x]$	Case 2		

RB-Deletion

12.	else if color[right[w]] = BLACK	
13.	then $color[left[w]] \leftarrow BLACK$	Case 3
14.	$color[w] \leftarrow RED$	Case 3
15.	RIGHT-ROTATION(T , w)	Case 3
16.	$w \leftarrow right[p[x]]$	Case 3
17.	$color[w] \leftarrow color[p[x]]$	Case 4
18.	$color[p[x]] \leftarrow BLACK$	Case 4
19.	$color[right[w]] \leftarrow BLACK$	Case 4
20.	LEFT-ROTATION($T, p[x]$)	Case 4
21.	$x \leftarrow root[T]$	Case 4
22.	else (same as then clause	
	with "right" and "left" exchanged)	
23.	$color[x] \leftarrow BLACK$	

Analysis of RB-Deletion

What is the running time of RB-DELETE?

Running time: *O*(*lgn*)

Delete 9

Case 3L: x's sibling w is black, and w's left child is red and w's right child is black.

Delete 9

Case 4L: *x*'s sibling *w* is black, and *w*'s right child is red.
Delete 4

Which is 4's successor?

Delete 10

Case 2L: *x*'s sibling *w* is black, and both of *w*'s children are black. Then, we get new *x*.

Delete 8

Which is 8's successor?

Delete 8

Case 1R: x's sibling w is red.

Delete 8

Case 3R: x's sibling w is black, and w's right child is red and w's left child is black.

Delete 8

Case 4R: *x*'s sibling *w* is black, and *w*'s left child is red.

Typical disk drive

B-tree

The *minimum degree* for this **B-tree** is t = 2, every node other than the root must have at least 1 keys and every node can contain at most 3 keys (2-3-4 tree)

Each internal node and leaf contains 1000 keys.

Definition of B-trees

A *B*-tree *T* haves the following properties:

1. Every node *x* has the following fields:

- *n*[*x*], the number of keys currently stored in node *x*;
- the n[x] keys themselves, stored in nondecreasing order, so that key₁[x] ≤ key₂[x] ≤ ... ≤ key_{n[x]}[x];
- *leaf*[*x*], a boolean value that is TRUE if *x* is a leaf and FALSE if *x* is an internal node.
- 2. Each internal node x also contains n[x] + 1 has the pointers c₁[x], c₂[x], ..., c_{n[x]+1} [x] to its children. Leaf nodes have no children, so their c_i fields are undefined.

Definition of B-trees

- 3. The keys $key_i[x]$ separate ranges of keys stored in each subtree: if k_i is any key stored in the subtree with root $c_i[x]$, then
 - $k_1 \leq key_1[x] \leq k_2 \leq key_2[x] \leq \dots \leq key_{n[x]}[x] \leq k_{n[x]+1}$
- **4.** All leaves have the same depth, which is the tree's height *h*.

Definition of B-trees

- 5. There are lower and upper bounds on the number of key a node can contain ($t \ge 2$, *minimum degree*)
 - Every node other than the root must have at least t - 1 keys. Every internal node other than the root thus has at least t children;
 - Every node can contain at most 2t 1 keys. An internal node can have at most 2t children.

Theorem. If $n \ge 1$, then for any *n*-key B-tree *T* of height *h* and minimum degree $t \ge 2$,

 $h \leq \log_t n.$

Splitting (B-tree)

Try to INSERT *T*

Splitting (B-tree)

Try to INSERT T

Insertion (B-tree)

Insertion (B-tree)

Insertion (B-tree)

Case 1: current node is root and has 3 keys.

Case 2: *current node has at most 2 keys and the appropriate subtree has at most 2 keys.*

Case 2: *current node has at most 2 keys and the appropriate subtree has at most 2 keys.*

Case 3: *current node has at most 2 keys and the appropriate subtree has 3 keys.*

#keys < 3

Case 4: the appropriate subtree has at most 2 keys (after case 3).

Case 2: *current node has at most 2 keys and the appropriate subtree has at most 2 keys.*

Case 2: *current node has at most 2 keys and the appropriate subtree has at most 2 keys.*

Case 2: *current node has at most 2 keys and the appropriate subtree has at most 2 keys.*

Case 3: *current node has at most 2 keys and the appropriate subtree has 3 keys.*

Case 4: the appropriate subtree has at most 2 keys (after case 3).

Case 1: current node is root and has 3 keys.

Insertion (B-tree)

INSERT F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E. #keys < 3 F T K L S V W

Case 3: *current node has at most 2 keys and the appropriate subtree has 3 keys.*

Case 4: the appropriate subtree has at most 2 keys (after case 3).

INSERT *F*, *S*, *Q*, *K*, *C*, *L*, *H*, *T*, *V*, *W*, *M*, *R*, *N*, *P*, *A*, *B*, *X*, *Y*, *D*, *Z*, *E*.

Deletion (B-tree)

Deletion (B-tree)

Case 2-a: key k = W is in a internal node and one of its children that precedes or **follows** k has at least 2 keys.

Case 2-b: key k = F is in a internal node and the both of its children that **precedes** or **follows** k only has 1 key.

Case 2-a: key k = F is in a internal node and one of its children that **precedes** or follows k has at least 2 keys.

Case 2-a: key k = Q is in a internal node and one of its children that precedes or **follows** k has at least 2 keys.

Case 2-b: key k = X is in a internal node and the both of its children that **precedes** or **follows** k only has 1 key.

Case 3-b: key k = K is not present in a internal node and the appropriate subtree that must contain k has only 1 key and the subtree's immediate siblings have only 1 key.

Case 2-a: key k = K is in a internal node and one of its children that precedes or **follows** k has at least 2 keys.

Case 3-a: key k = B is not present in a internal node and the appropriate subtree that must contain k has only 1 key and one of the subtree's immediate siblings has at least 2 keys.

Case 2-a: key k = B is in a internal node and one of its children that precedes or **follows** k has at least 2 keys.

Case 3-a: key k = H is not present in a internal node and the appropriate subtree that must contain k has only 1 key and one of the subtree's immediate siblings has at least 2 keys.

Case 1: key k = H is in a leaf.

Deletion (B-tree)

Case 1: key k = P is in a leaf.

B-tree

Thinking and practice.

- Write code for **B-TREE-SEARCH**(*x*, *k*)
- Write code for **B-TREE-SPLIT-CHILD**(*x*, *i*, *y*)
- Write code for **B-TREE-INSERT**(*T*, *k*)
- Write code for **B-TREE-DELETE**(*T*, *k*)

How about B+ tree?

Any question?

Xiaoqing Zheng Fundan University