Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Trees (max heap)

Binary trees

Binary Search Tree

- Each node x has:
- key[x]
- Pointers:
- left[x]
- $\operatorname{right}[x]$
- $p[x]$

Binary Search Tree

- Property: for any node x :
- For all nodes y in the left subtree of x :

$$
\operatorname{key}[y] \leq \operatorname{key}[x]
$$

- For all nodes y in the right subtree of x :

$$
\operatorname{key}[y] \geq \operatorname{key}[x]
$$

- Given a set of keys, is BST for those keys unique?

No uniqueness

What can we do given BST ?

Sort!

INORDER-TREE-WALK (x)

1. if $x \neq$ NIL
2. then INORDER-TREE-WALK (left $[x]$)
3. print key[x]
4. INORDER-TREE-WALK(right[x])

A preorder tree walk prints the root before the values in either subtree, and a postorder tree walk prints the root after the values in its subtrees.

Sort?

Sort?

(1) 5 (6 (8$)$
(9)

Sort?

(1)(3)(2)(3)

Sort?

Analysis of inorder-walk

Theorem. If x is the root of an n-node subtree, then the call INORDER-TREE-WALK (x) takes $\Theta(n)$ times.

Substitution method

$$
T(n)=(c+d) n+c
$$

Base case: $n=0, T(0)=(c+d) \cdot 0+c=c$
For $n>0$,

$$
\begin{aligned}
T(n) & =T(k)+T(n-k-1)+d \\
& =((c+d) k+c)+((c+d) \cdot(n-k-1)+c)+d \\
& =(c+d) n+c-(c+d)+c+d \\
& =(c+d) n+c
\end{aligned}
$$

Does it mean that we can sort n keys in $O(n)$ time?

No.
It just means that building a binary search tree takes Ω (nlgn) time (in the comparison model)

BST as a data structure

- Operations:
- Insert(x)
- Delete(x)
- Search(k)

Search

TREE-SEARCH (x, k)

1. if $x=$ NIL or $k=k e y[x]$
2. then return x
3. if $k<\operatorname{key}[x]$
4. then return TREE-SEARCH(left $[x], k)$
5. else return TREE-SEARCH(right $[x], k)$

Search

```
ITERATIVE-TREE-SEARCH (x, k)
1. while }x\not=\mathrm{ NIL and }k\not=key[x
2. do if k<key[x]
3. then }x\leftarrow\mathrm{ left[ }x
4. else }x\leftarrow\operatorname{right}[x
5. return }
```

On most computers, this version is more efficient.

Minimum and maximum

TREE-MINIMUM(x)

1. while $\operatorname{left}[x] \neq$ NIL
2. do $x \leftarrow \operatorname{left}[x]$
3. return x

TREE-MAXIMUM (x)

1. while right $[x] \neq$ NIL
2. \quad do $x \leftarrow \operatorname{right}[x]$
3. return x

Successor and predecessor

Successor and predecessor

Successor and predecessor

TREE-SUCCESSOR (x)

1. if $\operatorname{right}[x] \neq$ NIL
2. then return TREE-MINIMUN(right $[x]$)
3. $y \leftarrow p[x]$
4. while $y \neq$ NIL and $x=\operatorname{right}[y]$
5. \quad do $x \leftarrow y$
6. $y \leftarrow p[x]$
7. return y

Running time
$O(h)$

Constructing BST

TREE-INSERT (T, z)

1. $y \leftarrow$ NIL
2. $x \leftarrow \operatorname{root}[T]$
3. while $x \neq$ NIL
4. \quad do $y \leftarrow x$
5. if $\operatorname{key}[z]<\operatorname{key}[x]$
6. then $x \leftarrow \operatorname{left}[x]$
7. else $x \leftarrow \operatorname{right}[x]$
8. $p[z] \leftarrow y$
9. if $y=$ NIL
10. then $\operatorname{root}[T] \leftarrow z$
11. else if $k e y[z]$ < $k e y[y]$
12. then left $[x] \leftarrow z$
13. else $\operatorname{right}[x] \leftarrow z$
$O(h)$

TREE-INSERT(T, 2)

Analysis

- After we insert n elements, what is the worst possible BST height?
- Pretty bad: $n-1$
- Average: $O(n \lg n)$

Deletion (case 1)

Deletion (case 2)

Deletion (case 3)

z has two children.

Deletion

TREE-DELETE (T, z)

1. if $l e f t[z]=$ NIL or $\operatorname{right}[z]=$ NIL
2. then $y \leftarrow z$

Running time:
3. else $y \leftarrow \operatorname{TREE}-\operatorname{SUCCESSOR}(z)$
4. if left $[y] \neq$ NIL
5. then $x \leftarrow$ left $[y]$
6. else $x \leftarrow \operatorname{right}[y]$
7. if $x \neq \mathrm{NIL}$
8. then $p[x] \leftarrow p[y]$

Note: z's successor just has one child or z has one child.
9. if $p[y]=$ NIL
10. then $\operatorname{root}[T] \leftarrow x$
11. else if $y=$ left $[p[y]]$
12. then left $[p[y]] \leftarrow x$
13. else $\operatorname{right}[p[y]] \leftarrow x$
14. if $y \neq z$
15. then $k e y[z] \leftarrow k e y[y]$
16. return y

Balanced search trees

Balanced search trees, $\longrightarrow 1$ or how to avoid this even in the worst case

AVL (Adelson-Veskii and Landis) tree is identical to a binary search tree, except that for every node in the tree, the height of the left and right subtrees can differ by at most 1 .

AVL trees

Which one is AVL tree?

A violation might occur in four case when we insert new node to the AVL tree.

Case 1: an insertion into the left subtree of the left child of R.
Case2 : an insertion into the right subtree of the left child of R.
Case 3: an insertion into the left subtree of the right child of R.
Case 4: an insertion into the right subtree of the right child of R.

Single rotation

Right rotation to fix case 1

Single rotation

Left rotation to fix case 4

Double rotation

Single rotation fails to fix case 2

Double rotation (first step)

Left rotation

Double rotation (second step)

Right rotation

Double rotation

Left-right double rotation to fix case 2

Double rotation

Right-left double rotation to fix case 3

AVL tree rotation

Four types	Rotation
Case 1: Left-left	Right rotation
Case 4: Right-right	Left rotation
Case 2: Left-right	Left-right double rotation
Case 3: Right-left	Right-left double rotation

AVL tree example

Insert 2

AVL tree example (cont.)

Insert 1
Right rotation

AVL tree example (cont.)

Insert 4 and 5
Left rotation

AVL tree example (cont.)

Insert 6
Left rotation

AVL tree example (cont.)

Insert 7
Left rotation

AVL tree example (cont.)

Insert 16 and 15
Right-left rotation

AVL tree example (cont.)

Insert 14
Right-left rotation

AVL tree example (cont.)

Insert 13
Left rotation

AVL tree example (cont.)

Insert 12
Right rotation

AVL tree example (cont.)

Insert 11
Right rotation

AVL tree example (cont.)

Insert 10
Right rotation

AVL tree example (cont.)

Insert 8 and 9
Left-right rotation

Red-black trees

BSTs with an extra one-bit color field in each node.
Red-black properties:

1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x to a descendant leaf have the same number of black nodes.

Example of a red-black tree

Example of a red-black tree

Height of a red-black tree

Height of a red-black tree

Height of a red-black tree

Height of a red-black tree

Height of a red-black tree

Lemma of red-black tree

We call the number of black nodes on any path from, but not including, a node x down to a leaf the blackheight of the node, denoted $b h(x)$.

Lemma.

A red-black tree with n internal nodes has height at most $2 \lg (n+1)$

Dynamic-set operations search, minimum, maximum, successor, and predecessor can be implemented in
$O(\operatorname{lgn})$ time on red-black trees.

Proof

Subtree rooted at any node x contains at least $2^{\operatorname{bh}(x)}-1$ internal nodes.

- Base case:

Height of x is 0 , then x must be a leaf (nil[T]), subtree rooted at x contains at least
$2^{b h(x)}-1=2^{0}-1=0$ internal nodes.

- Inductive:

Height of a child of x is less than the height of x itself, subtree rooted at x contains at least
$\left(2^{\operatorname{bh}(x)-1}-1\right)+\left(2^{\operatorname{bh}(x)-1}-1\right)+1=2^{\operatorname{bh}(x)}-1$ internal nodes.

Proof (cont.)

According to property 4, at least the nodes on any simple path from the root to a leaf, not including the root, must be black.

Consequently, the black-height of the root must be at least $h / 2$; thus,

$$
\begin{aligned}
& n \geq 2^{h / 2-1}-1 . \\
& h \leq 2 \lg (n+1) .
\end{aligned}
$$

Left rotation

LEFT-ROTATE (T, x)

1. $y \leftarrow \operatorname{right}[x]$
2. right $[x] \leftarrow$ left $[y]$
3. $p[$ left $[y]] \leftarrow x$
4. $p[y] \leftarrow p[x]$
5. if $p[x]=\operatorname{nil}[T]$
6. then $\operatorname{root}[T] \leftarrow y$
7. else if $x=$ left $[p[x]]$
8. then left $[p[x]] \leftarrow y$
$\begin{array}{ll}\text { 8. } & \text { then } \operatorname{left}[p[x]] \leftarrow y \\ \text { 9. } & \text { else } \operatorname{right}[p[x]] \leftarrow y\end{array}$
9. then $\operatorname{left}[p[x]] \leftarrow y$
10. else $\operatorname{right}[p[x]] \leftarrow y$
11. left $[y] \leftarrow x$
12. $p[x] \leftarrow y$

RB-Insertion

RB-INSERT (T, z)

1. $y \leftarrow \operatorname{nil}[T]$
2. $x \leftarrow \operatorname{root}[T]$
3. while $x \neq \operatorname{nil}[T]$
4. do $y \leftarrow x$
5. if key $[\mathrm{z}]<\operatorname{key}[x]$
6. \quad then $x \leftarrow \operatorname{left}[x]$
7. else $x \leftarrow \operatorname{right}[x]$
8. $p[z] \leftarrow y$
9. if $y=\operatorname{nil}[T]$
10. then $\operatorname{root}[T] \leftarrow z$
11. else if $k e y[z]<k e y[y]$
12. then left $[y] \leftarrow z$
13. else right $[y] \leftarrow z$
14. left $[z] \leftarrow \operatorname{nil}[T]$
15. $\operatorname{right}[z] \leftarrow \operatorname{nil}[T]$
16. color $[z] \leftarrow R E D$
17. $\operatorname{RB}-\operatorname{INSERT}-\operatorname{FIXUP}(T, z)$

RB-Insertion

Which of the red-black properties can be violated upon the call to RB-INSERT-FIXUP?

RB-Insertion (case 1)

Case 1: z 's uncle y is red

RB-Insertion (case 2)

Case 2: z's uncle y is black and z is a right child. Convert case 2 to 3.

RB-Insertion (case 3)

Right rotation

Case 3: z's uncle y is black and z is a left child

RB-tree insertion

Types		Operation
z's father is left child	Case 1L: z's uncle is red.	Change color. and z is right child.
	Case 3L: z's uncle is black and z is left child.	Right rotation, $p(p(z))$.
	Case 1R: z's uncle is red.	Change color. and z is left child.
	Case 3R: z's uncle is black and z is right child.	Left rotation, $p(p(z))$.

RB-Insertion

RB-INSERT-FIXUP (T, z)

1. while $\operatorname{color}[p[z]]=R E D$
2. do if $p[z]=\operatorname{left}[p[p[z]]]$
3. then $y \leftarrow \operatorname{right}[p[p[z]]]$
4. if color $[y]=R E D$
5. then color $[p[z]] \leftarrow$ BLACK
color $[y] \leftarrow$ BLACK
color $[p[p[z]]] \leftarrow R E D$
Case 1
Case 1
Case 1

RB-Insertion

9.
10.
11.
12.
13.
14.
15.

$$
\text { else if } z=\operatorname{right}[p[z]]
$$ then $z \leftarrow p[z]$

LEFT-ROTATION(T, z)
color $[p[z]] \leftarrow$ BLACK
color $[p[p[z]]] \leftarrow R E D$
RIGHT-ROTATION($T, p[p[z]])$
Case 2
Case 2
Case 3
Case 3
Case 3
else (same as then clause with "right" and "left" exchanged)
16. color $[\operatorname{root}[T]] \leftarrow$ BLACK

Running time:

$O(\lg n)$

RB-Example

INSERT $10,2,12,4,6,8,1,9,7,3,11,5$
Change color

RB-Example (cont.)

INSERT $10,2,12,4,6,8,1,9,7,3,11,5$

No change

> Node z's father is black, so stop.

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Case 1L: z 's uncle y is red and we get new z.

RB-Example (cont.)

INSERT $10,2,12,4,6,8,1,9,7,3,11,5$

Change color

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Case 3R: z 's uncle y is black and z is a right child.

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Node z's father is black, so stop.

Case 1R: z's uncle y is red and we get new z.

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Case 3R: z 's uncle y is black and z is a right child.

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Case 1L: z 's uncle y is red and we get new z.

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Case 2L: z 's uncle y is black and z is a right child.

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

Case 3L: z 's uncle y is black and z is a left child.

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

RB-Example (cont.)

INSERT 10, 2, 12, 4, 6, 8, 1, 9, 7, 3, 11, 5

RB-Deletion

RB-DELETE (T, z)

1. if $l e f t[z]=\operatorname{nil}[T]$ or $\operatorname{right}[z]=\operatorname{nil}[T]$
2. then $y \leftarrow z$
3. else $y \leftarrow \operatorname{TREE}-\operatorname{SUCCESSOR}(z)$
4. if left $[y] \neq \operatorname{nil}[T]$
5. then $x \leftarrow$ left $[y]$
6. else $x \leftarrow \operatorname{right}[y] \quad 10$. else if $y=\operatorname{left}[p[y]]$
7. $p[x] \leftarrow p[y]$
8. if $p[y]=\operatorname{nil}[T]$
9. then left $[p[y]] \leftarrow x$
10. else $\operatorname{right}[p[y]] \leftarrow x$
11. then $\operatorname{root}[T] \leftarrow x$
12. if $y \neq z$
13. then $k e y[z] \leftarrow k e y[y]$
14. if color $[y]=$ BLACK
15. then $\operatorname{RB}-\operatorname{DELETE}-\operatorname{FIXUP}(T, x)$
16. return y

RB-Deletion

Which of the red-black properties can be violated upon the call to RB-DELETE-FIXUP?

RB-Deletion (case 1)

Case 1: x 's sibling w is red.
Convert case 1 to 2, 3, or 4.

RB-Deletion (case 2)

Case 2: x's sibling w is black, and both of w's children are black.
Get the new node x.

RB-Deletion (case 3)

 children is red, and w's right child is black. Convert case 3 to 4.

RB-Deletion (case 4)

Case 4: x's sibling w is black, and w's right child is red.
Terminate the while loop.

RB-tree deletion

Types		Operation
z is left child	Case 1L: x 's sibling w is red.	Left rotation, $p(x)$.
	Case 2L: x 's sibling w is black and both of w's children are black.	Change color.
	Case 3L: x 's sibling w is black, and w's left children is red, and w's right child is black.	Right rotation, w.
	Case 4L: x 's sibling w is black, and w's right child is red.	Left rotation, $p(x)$.
	Case 1R: x 's sibling w is red.Case 2R: x 's sibling w is black and both of w's children are black.	Change color.
	Case 3R: x 's sibling w is black, and w's right children is red, and w 's left child is black.	Left rotation, w.
	Case 4R: x 's sibling w is black, and w's left child is red.	Right rotation, $p(x)$.

RB-DELETE

RB-DELETE-FIXUP (T, z)

1. while $x \neq \operatorname{root}[T]$ and $\operatorname{color}[x]=$ BLACK
2. do if $x=\operatorname{left}[p[x]]$
3. \quad then $w \leftarrow \operatorname{right}[p[x]]$
4. if $\operatorname{color}[w]=R E D$
5.
6.
7.
8.
9.
10.
11.

then color $[w] \leftarrow$ BLACK
color $[p[x]] \leftarrow R E D$
LEFT-ROTATION(T, $p[x]$)
$w \leftarrow \operatorname{right}[p[z]]$
if color $[l e f t[w]]=$ BLACK and color[right $[w]]=$ BLACK then color $[w] \leftarrow R E D$
$x \leftarrow p[x]$

Case 1
Case 1
Case 1
Case 1

Case 2
Case 2

RB-Deletion

12. else if color $[$ right $[w]]=$ BLACK
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

else (same as then clause with "right" and "left" exchanged)
23. color $[x] \leftarrow$ BLACK

Case 3
color $[w] \leftarrow R E D$
RIGHT-ROTATION(T, w)
$w \leftarrow \operatorname{right}[p[x]]$
$\operatorname{color}[w] \leftarrow \operatorname{color}[p[x]]$
color $[p[x]] \leftarrow$ BLACK
color[right[w]] \leftarrow BLACK
$\operatorname{LEFT}-\operatorname{ROTATION}(T, p[x])$
$x \leftarrow \operatorname{root}[T]$
Case 3
Case 3
Case 3
Case 4
Case 4
Case 4
Case 4
Case 4

Analysis of RB-Deletion

What is the running time of RB-DELETE?

Running time:

$$
O(\operatorname{lgn})
$$

RB-Example

Delete 3

RB-Example

Delete 2

RB-Example

Delete 2

RB-Example

Delete 9

RB-Example

Delete 9

Case 3L: x's sibling w is black, and w's left child is red and w's right child is black.

RB-Example

Delete 9

Case 4L: x 's sibling w is black, and w's right child is red.

RB-Example

Delete 4

Which is 4's successor?

RB-Example

Delete 4

RB-Example

Delete 10

RB-Example

Delete 10

Case 2L: x 's sibling w is black, and both of w's children are black. Then, we get new x.

RB-Example

Delete 10

RB-Example

Delete 11

RB-Example

Delete 11

RB-Example

Delete 8

Which is 8's successor?

RB-Example

Delete 8

RB-Example

Delete 8

Case 1R: x 's sibling w is red.

RB-Example

Delete 8

Case 3R: x 's sibling w is black, and w's right child is red and w's left child is black.

RB-Example

Delete 8

Case 4R: x's sibling w is black, and w's left child is red.

Typical disk drive

B-tree

The minimum degree for this B-tree is $t=2$, every node other than the root must have at least 1 keys and every node can contain at most 3 keys (2-3-4 tree)

B-tree (1000 keys)

Each internal node and leaf contains 1000 keys.

Definition of B-trees

A \boldsymbol{B}-tree T haves the following properties:

1. Every node x has the following fields:

- $n[x]$, the number of keys currently stored in node x;
- the $n[x]$ keys themselves, stored in nondecreasing order, so that $\operatorname{key}_{1}[x] \leq \operatorname{key}_{2}[x] \leq \ldots \leq \operatorname{key}_{n[x]}[x]$;
- leaf $[x]$, a boolean value that is TRUE if x is a leaf and FALSE if x is an internal node.

2. Each internal node x also contains $n[x]+1$ has the pointers $c_{1}[x], c_{2}[x], \ldots, c_{n[x]+1}[x]$ to its children. Leaf nodes have no children, so their c_{i} fields are undefined.

Definition of B-trees

3. The keys key $_{i}[x]$ separate ranges of keys stored in each subtree: if k_{i} is any key stored in the subtree with root $c_{i}[x]$, then $k_{1} \leq$ key $_{1}[x] \leq k_{2} \leq$ key $_{2}[x] \leq \ldots \leq \operatorname{key}_{n[x]}[x] \leq k_{n[x]+1}$
4. All leaves have the same depth, which is the tree's height h.

Definition of B-trees

5. There are lower and upper bounds on the number of key a node can contain ($t \geq 2$, minimum degree)

- Every node other than the root must have at least $t-1$ keys. Every internal node other than the root thus has at least t children;
- Every node can contain at most $2 t-1$ keys. An internal node can have at most $2 t$ children.

Theorem. If $n \geq 1$, then for any n-key B-tree T of height h and minimum degree $t \geq 2$,

$$
h \leq \log _{t} n .
$$

Searching a B-tree

Searching a B-tree

SEARCH K

Splitting (B-tree)

Try to INSERT T

Minimum degree $t=2$

Splitting (B-tree)

Try to INSERT T

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$, X, Y, D, Z, E.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$, X, Y, D, Z, E.
\square

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$, X, Y, D, Z, E.
\square

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$, X, Y, D, Z, E.
|F||||s]

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 1: current node is root and has 3 keys.
Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 2: current node has at most 2 keys and the appropriate subtree has at most 2 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 2: current node has at most 2 keys and the appropriate subtree has at most 2 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 3: current node has at most 2 keys and the appropriate subtree has 3 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 4: the appropriate subtree has at most 2 keys (after case 3).

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 2: current node has at most 2 keys and the appropriate subtree has at most 2 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 2: current node has at most 2 keys and the appropriate subtree has at most 2 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 2: current node has at most 2 keys and the appropriate subtree has at most 2 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,
X, Y, D, Z, E.

Case 3: current node has at most 2 keys and the appropriate subtree has 3 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 4: the appropriate subtree has at most 2 keys (after case 3).

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Case 1: current node is root and has 3 keys.
Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$,

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$, X, Y, D, Z, E.

Case 3: current node has at most 2 keys and the appropriate subtree has 3 keys.

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$, X, Y, D, Z, E.

Case 4: the appropriate subtree has at most 2 keys (after case 3).

Minimum degree $t=2$

Insertion (B-tree)

INSERT $F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B$, X, Y, D, Z, E.

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Case 1: key $k=Y$ is in a leaf.

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Deletion (B-tree)

DELETE $Y, W, Q, X, K, B, H, P \quad$ Minimum degree $t=2$

Case 2-a: key $k=W$ is in a internal node and one of its children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETE F other than W

Minimum degree $t=2$

Case 2-b: key $k=F$ is in a internal node and the both of its children that precedes or follows konly has 1 key.

Deletion (B-tree)

DELETE F other than W

Minimum degree $t=2$

Case 2-a: key $k=F$ is in a internal node and one of its children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Which is Q 's successor? It is R.
Case 2-a: key $k=Q$ is in a internal node and one of its children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Case 2-b: key $k=X$ is in a internal node and the both of its children that precedes or follows k only has 1 key.

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Current node is $\{V, X, Z$ \}

Deletion (B-tree)

DELETE $Y, W, Q, X, K, B, H, P \quad$ Minimum degree $t=2$

Case 3-b: key $k=K$ is not present in a internal node and the appropriate subtree that must contain k has only 1 key and the subtree's immediate siblings have only 1 key .

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Case 2-a: key $k=K$ is in a internal node and one of its children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETE $Y, W, Q, X, K, B, H, P \quad$ Minimum degree $t=2$

Case 3-a: key $k=B$ is not present in a internal node and the appropriate subtree that must contain k has only 1 key and one of the subtree's immediate siblings has at least 2 keys .

Deletion (B-tree)

DELETE $Y, W, Q, X, K, B, H, P \quad$ Minimum degree $t=2$

Case 2-a: key $k=B$ is in a internal node and one of its children that precedes or follows k has at least 2 keys.

Deletion (B-tree)

DELETE $Y, W, Q, X, K, B, H, P \quad$ Minimum degree $t=2$

Case 3-a: key $k=H$ is not present in a internal node and the appropriate subtree that must contain k has only 1 key and one of the subtree's immediate siblings has at least 2 keys .

Deletion (B-tree)

DELETE $Y, W, Q, X, K, B, H, P \quad$ Minimum degree $t=2$

Case 1: key $k=H$ is in a leaf.

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

Deletion (B-tree)

DELETE Y, W, Q, X, K, B, H, P Minimum degree $t=2$

\#keys > 1
Case 1: key $k=P$ is in a leaf.

B-tree

Thinking and practice.

- Write code for B-TREE-SEARCH (x, k)
- Write code for B-TREE-SPLIT-CHILD (x, i, y)
- Write code for B-TREE-INSERT (T, k)
- Write code for B-TREE-DELETE (T, k)

How about B+ tree?

Any question?

Xiaoqing Zheng
Fundan University

